Back analysis of shear strength parameters of slope based on BP neural network and genetic algorithm

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaopeng Deng, Xinghua Xiang
{"title":"Back analysis of shear strength parameters of slope based on BP neural network and genetic algorithm","authors":"Xiaopeng Deng,&nbsp;Xinghua Xiang","doi":"10.1002/eng2.12872","DOIUrl":null,"url":null,"abstract":"<p>Efficient and accurate acquisition of slope shear strength parameters is the key to slope stability analysis and landslide prevention engineering design. This paper establishes a back analysis method based on uniform design, artificial neural network, and genetic algorithm. It can obtain the shear strength parameters of slopes based on information such as the radius and center coordinates of the slip surface obtained from on-site investigations. This method has been applied to engineering practice. The research results indicate that the stability of the waste dump slope is most sensitive to the response of the internal friction angle of the loose body, followed by cohesion, and least sensitive to the response of the soil volume weight. This method can effectively reduce the number of network training samples and efficiently and quickly determine the initial weights of the BP (abbreviation for back-propagation) neural network. This method can efficiently and quickly conduct back analysis to obtain the shear strength parameters of slopes. Using the obtained shear strength parameters for slope stability calculation, the most dangerous slip surface abscissa error, ordinate error, and slip surface radius error are only 3.59%, 0.95%, and 1.83%. It is recommended to promote the back analysis method of shear strength parameters in engineering practice in the future.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.12872","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.12872","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and accurate acquisition of slope shear strength parameters is the key to slope stability analysis and landslide prevention engineering design. This paper establishes a back analysis method based on uniform design, artificial neural network, and genetic algorithm. It can obtain the shear strength parameters of slopes based on information such as the radius and center coordinates of the slip surface obtained from on-site investigations. This method has been applied to engineering practice. The research results indicate that the stability of the waste dump slope is most sensitive to the response of the internal friction angle of the loose body, followed by cohesion, and least sensitive to the response of the soil volume weight. This method can effectively reduce the number of network training samples and efficiently and quickly determine the initial weights of the BP (abbreviation for back-propagation) neural network. This method can efficiently and quickly conduct back analysis to obtain the shear strength parameters of slopes. Using the obtained shear strength parameters for slope stability calculation, the most dangerous slip surface abscissa error, ordinate error, and slip surface radius error are only 3.59%, 0.95%, and 1.83%. It is recommended to promote the back analysis method of shear strength parameters in engineering practice in the future.

Abstract Image

基于 BP 神经网络和遗传算法的边坡抗剪强度参数回溯分析
高效、准确地获取边坡抗剪强度参数是边坡稳定性分析和滑坡防治工程设计的关键。本文建立了一种基于统一设计、人工神经网络和遗传算法的后向分析方法。它可以根据现场调查获得的滑动面半径和中心坐标等信息,获取边坡的抗剪强度参数。该方法已应用于工程实践。研究结果表明,垃圾堆放场边坡的稳定性对松散体内摩擦角的响应最为敏感,其次是内聚力,而对土体容重的响应最不敏感。这种方法可以有效减少网络训练样本的数量,高效快速地确定 BP(反向传播的缩写)神经网络的初始权值。这种方法可以高效、快速地进行反演分析,从而获得边坡的抗剪强度参数。利用所获得的剪切强度参数进行边坡稳定性计算,最危险的滑移面的纵座标误差、横座标误差和滑移面半径误差仅为 3.59%、0.95% 和 1.83%。建议今后在工程实践中推广剪切强度参数的反分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信