{"title":"Reducing the Environmental Impacts of Plastic Cosmetic Packaging: A Multi-Attribute Life Cycle Assessment","authors":"Nicole Vassallo, P. Refalo","doi":"10.3390/cosmetics11020034","DOIUrl":null,"url":null,"abstract":"The global packaging industry has been growing significantly, resulting in an increase in waste and emissions. Social responsibilities, regulations and targets are shifting companies’ priorities to various sustainable practices. This study comprised a life cycle assessment (LCA) to quantify and compare key initiatives influencing the sustainability of plastic cosmetic packaging. The life cycle environmental effects of dematerialisation, recycled content, energy-saving initiatives and renewable energy powering the manufacturing processes, and the end-of-life (EoL) recycling rates of various scenarios, were evaluated. Moreover, a variety of fossil-based and bio-based polymers, such as acrylonitrile butadiene styrene (ABS), polypropylene (PP), polyethylene terephthalate (PET), wood–polymer composite (WPC) and polylactic acid (PLA), were considered. The study determined that dematerialisation and recycled content had the most beneficial impacts on packaging sustainability. When 100% recycled materials were used, an overall impact reduction of 42–60% was noted for all the materials considered. Using 100% renewable energy and applying measures to reduce the energy consumption in the manufacturing stage by 50% reduced the total impact by approximately 9–17% and 7–13%, respectively. Furthermore, it was concluded that PP had the lowest environmental impacts in the majority of the case scenarios considered, by an average of 46%.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"25 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cosmetics11020034","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The global packaging industry has been growing significantly, resulting in an increase in waste and emissions. Social responsibilities, regulations and targets are shifting companies’ priorities to various sustainable practices. This study comprised a life cycle assessment (LCA) to quantify and compare key initiatives influencing the sustainability of plastic cosmetic packaging. The life cycle environmental effects of dematerialisation, recycled content, energy-saving initiatives and renewable energy powering the manufacturing processes, and the end-of-life (EoL) recycling rates of various scenarios, were evaluated. Moreover, a variety of fossil-based and bio-based polymers, such as acrylonitrile butadiene styrene (ABS), polypropylene (PP), polyethylene terephthalate (PET), wood–polymer composite (WPC) and polylactic acid (PLA), were considered. The study determined that dematerialisation and recycled content had the most beneficial impacts on packaging sustainability. When 100% recycled materials were used, an overall impact reduction of 42–60% was noted for all the materials considered. Using 100% renewable energy and applying measures to reduce the energy consumption in the manufacturing stage by 50% reduced the total impact by approximately 9–17% and 7–13%, respectively. Furthermore, it was concluded that PP had the lowest environmental impacts in the majority of the case scenarios considered, by an average of 46%.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico