{"title":"The p53 protein – not only the guardian of the genome","authors":"M. Rusin","doi":"10.18388/pb.2021_518","DOIUrl":null,"url":null,"abstract":"The p53 tumor suppressor protein is best known as an activator of cell cycle arrest and apoptosis. Only a fraction of p53-activated genes encode proteins affecting cellular replication and various forms of cell death (apoptosis, ferroptosis, autophagy). The p53-regulated genes can be divided into so-called the core transcriptional program, which comprises genes activated in most cell types by most activators, and into the group of genes activated in in cell- or stress-specific manner. Activation of p53 occurs via the extensive set of posttranslational modifications, which adjust its stability, interaction with other transcription regulators, and its ability to form a tetramer. Surprisingly, in mouse models, the activation of the best-studied p53 target genes encoding the inhibitor of the cell cycle (CDKN1A) or the inducers of apoptosis (e.g. NOXA, PUMA) is dispensable for protection against cancers. Thus, the non-classical functions of p53 must be studied to better understand its tumor suppressive mechanisms.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postępy Biochemii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18388/pb.2021_518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The p53 tumor suppressor protein is best known as an activator of cell cycle arrest and apoptosis. Only a fraction of p53-activated genes encode proteins affecting cellular replication and various forms of cell death (apoptosis, ferroptosis, autophagy). The p53-regulated genes can be divided into so-called the core transcriptional program, which comprises genes activated in most cell types by most activators, and into the group of genes activated in in cell- or stress-specific manner. Activation of p53 occurs via the extensive set of posttranslational modifications, which adjust its stability, interaction with other transcription regulators, and its ability to form a tetramer. Surprisingly, in mouse models, the activation of the best-studied p53 target genes encoding the inhibitor of the cell cycle (CDKN1A) or the inducers of apoptosis (e.g. NOXA, PUMA) is dispensable for protection against cancers. Thus, the non-classical functions of p53 must be studied to better understand its tumor suppressive mechanisms.