Broadband Diffractive Neural Networks Enabling Classification of Visible Wavelengths

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ying Zhi Cheong, Litty Thekkekara, Madhu Bhaskaran, Blanca del Rosal, Sharath Sriram
{"title":"Broadband Diffractive Neural Networks Enabling Classification of Visible Wavelengths","authors":"Ying Zhi Cheong,&nbsp;Litty Thekkekara,&nbsp;Madhu Bhaskaran,&nbsp;Blanca del Rosal,&nbsp;Sharath Sriram","doi":"10.1002/adpr.202300310","DOIUrl":null,"url":null,"abstract":"<p>Diffractive neural networks (DNNs) are emerging as a new machine learning hardware based on optical diffraction with parallel and high-throughput information processing. The optical inputs to DNNs are spatially modulated by propagating through passive diffractive layers that work in succession to achieve an inference. Herein, visible wavelength classification using single- and two-layer DNNs fabricated using direct laser writing is demonstrated. The proposed DNN approach accepts the point spread function of two different wavelengths modeled after a microscope objective as the input and modulates the input field toward the target detector for classification. Of the three models trained to classify different wavelength pairs, the highest performance observed is for the classification of 561 and 785 nm, achieving over 90% accuracy. This work demonstrates the potential of all-optical artificial neural networks for applications requiring visible wavelengths, from visible light beam shaping to spectral analysis and optical imaging.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300310","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diffractive neural networks (DNNs) are emerging as a new machine learning hardware based on optical diffraction with parallel and high-throughput information processing. The optical inputs to DNNs are spatially modulated by propagating through passive diffractive layers that work in succession to achieve an inference. Herein, visible wavelength classification using single- and two-layer DNNs fabricated using direct laser writing is demonstrated. The proposed DNN approach accepts the point spread function of two different wavelengths modeled after a microscope objective as the input and modulates the input field toward the target detector for classification. Of the three models trained to classify different wavelength pairs, the highest performance observed is for the classification of 561 and 785 nm, achieving over 90% accuracy. This work demonstrates the potential of all-optical artificial neural networks for applications requiring visible wavelengths, from visible light beam shaping to spectral analysis and optical imaging.

Abstract Image

可对可见光波长进行分类的宽带衍射神经网络
衍射神经网络(DNN)是一种基于光学衍射的新型机器学习硬件,具有并行和高吞吐量信息处理功能。衍射神经网络的光输入通过无源衍射层进行空间调制,这些衍射层连续工作以实现推理。本文展示了利用激光直接写入技术制造的单层和双层 DNN 的可见光波长分类。所提出的 DNN 方法接受以显微镜物镜为模型的两种不同波长的点扩散函数作为输入,并将输入场调制到目标检测器以进行分类。在对不同波长对进行分类的三个训练模型中,561 和 785 nm 波长的分类性能最高,准确率超过 90%。这项工作展示了全光学人工神经网络在需要可见光波长的应用中的潜力,包括可见光光束整形、光谱分析和光学成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信