Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials

Congqi Lin, Ruixiang Peng, Jingyu Shi, Ziyi Ge
{"title":"Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials","authors":"Congqi Lin,&nbsp;Ruixiang Peng,&nbsp;Jingyu Shi,&nbsp;Ziyi Ge","doi":"10.1002/EXP.20230122","DOIUrl":null,"url":null,"abstract":"<p>In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (<i>PCE</i>) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration (Beijing, China)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/EXP.20230122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.

Abstract Image

基于苯并二噻吩给体材料的高效有机太阳能电池的研究进展与应用
近几十年来,由于全球气候变化不可逆转,人们对清洁和可再生能源的需求日益迫切。因此,有机太阳能电池(OSCs)已成为解决这一问题的一种有前途的替代方案。在这篇综述中,我们总结了苯并二噻吩(BDT)基聚合物和小分子供体材料自诞生以来在分子设计策略方面的最新进展,重点介绍了主链工程、侧链工程和其他独特分子设计途径的发展。迄今为止,由基于 BDT 的供体材料制备的二元 OSC 的功率转换效率(PCE)已接近 20%。本研究详细探讨了供体材料的分子变化与相应 OSC 器件光电性能之间的潜在关系,从而为未来稳定高效的供体材料提供了合理的分子设计指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信