{"title":"Singular value and unitarily invariant norm inequalities for matrices","authors":"Ahmad Al-Natoor, Omar Hirzallah, Fuad Kittaneh","doi":"10.1007/s43036-024-00319-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove some new singular value and unitarily invariant norm inequalities for matrices. Among other results, it is shown that if <i>X</i>, <i>Y</i>, <i>Z</i>, <i>W</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> matrices, then </p><div><div><span>$$\\begin{aligned} s_{j}\\left( XY+ZW\\right) \\le \\textrm{max}\\left( \\left\\| Y\\right\\| ,\\left\\| Z\\right\\| \\right) s_{j}\\left( X\\oplus W\\right) +\\frac{1}{2} \\left\\| XY+ZW\\right\\| \\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$\\begin{aligned} \\Vert XY\\pm YX\\Vert \\le \\Vert X\\Vert \\Vert Y\\Vert +w(XY) \\end{aligned}$$</span></div></div><p>for <span>\\(j=1,2,\\ldots ,n\\)</span>, where <span>\\(\\left\\| \\cdot \\right\\| ,w(\\cdot ),\\)</span> and <span>\\( s_{j}(\\cdot )\\)</span> denote the spectral norm, the numerical radius, and the <i>j</i>th singular value of matrices.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00319-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove some new singular value and unitarily invariant norm inequalities for matrices. Among other results, it is shown that if X, Y, Z, W are n\(\times \)n matrices, then
for \(j=1,2,\ldots ,n\), where \(\left\| \cdot \right\| ,w(\cdot ),\) and \( s_{j}(\cdot )\) denote the spectral norm, the numerical radius, and the jth singular value of matrices.