Singular value and unitarily invariant norm inequalities for matrices

IF 0.8 Q2 MATHEMATICS
Ahmad Al-Natoor, Omar Hirzallah, Fuad Kittaneh
{"title":"Singular value and unitarily invariant norm inequalities for matrices","authors":"Ahmad Al-Natoor,&nbsp;Omar Hirzallah,&nbsp;Fuad Kittaneh","doi":"10.1007/s43036-024-00319-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove some new singular value and unitarily invariant norm inequalities for matrices. Among other results, it is shown that if <i>X</i>, <i>Y</i>, <i>Z</i>, <i>W</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> matrices, then </p><div><div><span>$$\\begin{aligned} s_{j}\\left( XY+ZW\\right) \\le \\textrm{max}\\left( \\left\\| Y\\right\\| ,\\left\\| Z\\right\\| \\right) s_{j}\\left( X\\oplus W\\right) +\\frac{1}{2} \\left\\| XY+ZW\\right\\| \\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$\\begin{aligned} \\Vert XY\\pm YX\\Vert \\le \\Vert X\\Vert \\Vert Y\\Vert +w(XY) \\end{aligned}$$</span></div></div><p>for <span>\\(j=1,2,\\ldots ,n\\)</span>, where <span>\\(\\left\\| \\cdot \\right\\| ,w(\\cdot ),\\)</span> and <span>\\( s_{j}(\\cdot )\\)</span> denote the spectral norm, the numerical radius, and the <i>j</i>th singular value of matrices.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00319-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove some new singular value and unitarily invariant norm inequalities for matrices. Among other results, it is shown that if XYZW are n \(\times \) n matrices, then

$$\begin{aligned} s_{j}\left( XY+ZW\right) \le \textrm{max}\left( \left\| Y\right\| ,\left\| Z\right\| \right) s_{j}\left( X\oplus W\right) +\frac{1}{2} \left\| XY+ZW\right\| \end{aligned}$$

and

$$\begin{aligned} \Vert XY\pm YX\Vert \le \Vert X\Vert \Vert Y\Vert +w(XY) \end{aligned}$$

for \(j=1,2,\ldots ,n\), where \(\left\| \cdot \right\| ,w(\cdot ),\) and \( s_{j}(\cdot )\) denote the spectral norm, the numerical radius, and the jth singular value of matrices.

矩阵的奇异值和单位不变规范不等式
在本文中,我们证明了一些新的矩阵奇异值和单位不变规范不等式。在其他结果中,我们证明了如果 X、Y、Z、W 是 n \(\times \) n 个矩阵,那么 $$\begin{aligned} s_{j}\left( XY+ZW\right) \le \textrm{max}\left( \left\| Y\right\| ,\left\| Z\right\| \right) s_{j}\left( Xoplus W\right) +\frac{1}{2}| XY+ZWright\| \end{aligned}$$和 $$\begin{aligned}\Vert XY\pm YX\Vert \le \Vert X\Vert \Vert Y\Vert +w(XY) \end{aligned}$$for \(j=1,2,\ldots ,n\), where \(\left\| \cdot \right\| 、w(\cdot ),\) 和 \( s_{j}(\cdot )\) 表示矩阵的谱规范、数值半径和第 j 个奇异值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信