Virtual position predictive control with system delay observer to improve PMLSM position tracking accuracy

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rongkun Wang, Congwei Su, Quankai Du, Qibin Xiong, Yujia Zhuang, Xinyi Zhang, Xinhua Guo
{"title":"Virtual position predictive control with system delay observer to improve PMLSM position tracking accuracy","authors":"Rongkun Wang, Congwei Su, Quankai Du, Qibin Xiong, Yujia Zhuang, Xinyi Zhang, Xinhua Guo","doi":"10.1049/elp2.12425","DOIUrl":null,"url":null,"abstract":"To improve the position tracking accuracy of permanent magnet linear synchronous motors (PMLSM), this paper introduces a virtual position predictive control (VPPC) with a system delay observer (SDO). Un‐like conventional position predictive control (CPPC), which ignores the complexity of prediction models and velocity adjustments, the proposed VPPC combines a simplified position model with an active variable speed control. This design accelerates mover response and increases maximum reference speeds through active adjustments to better estimate the predicted output. Since the prediction period in CPPC often misaligns with the system delay, resulting in additional prediction errors, this paper further explores the relationship between predictive periods and system delay. Based on this analysis and a unified modelling concept, an SDO is included to observe and compensate for system delay, correcting the prediction period and optimising the control model. Experimental results on a PMLSM platform confirm the superior position tracking performance of the VPPC with SDO compared to conventional controllers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/elp2.12425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the position tracking accuracy of permanent magnet linear synchronous motors (PMLSM), this paper introduces a virtual position predictive control (VPPC) with a system delay observer (SDO). Un‐like conventional position predictive control (CPPC), which ignores the complexity of prediction models and velocity adjustments, the proposed VPPC combines a simplified position model with an active variable speed control. This design accelerates mover response and increases maximum reference speeds through active adjustments to better estimate the predicted output. Since the prediction period in CPPC often misaligns with the system delay, resulting in additional prediction errors, this paper further explores the relationship between predictive periods and system delay. Based on this analysis and a unified modelling concept, an SDO is included to observe and compensate for system delay, correcting the prediction period and optimising the control model. Experimental results on a PMLSM platform confirm the superior position tracking performance of the VPPC with SDO compared to conventional controllers.
利用系统延迟观测器进行虚拟位置预测控制,提高 PMLSM 位置跟踪精度
为了提高永磁直线同步电机(PMLSM)的位置跟踪精度,本文介绍了一种带有系统延迟观测器(SDO)的虚拟位置预测控制(VPPC)。与忽略预测模型和速度调整复杂性的传统位置预测控制(CPPC)不同,本文提出的 VPPC 将简化的位置模型与主动变速控制相结合。这种设计通过主动调整来更好地估计预测输出,从而加快了传动装置的响应速度并提高了最大参考速度。由于 CPPC 中的预测周期经常与系统延迟错位,从而导致额外的预测误差,因此本文进一步探讨了预测周期与系统延迟之间的关系。在此分析和统一建模概念的基础上,加入了 SDO 来观测和补偿系统延迟,修正预测周期并优化控制模型。在 PMLSM 平台上的实验结果证实,与传统控制器相比,带有 SDO 的 VPPC 具有更优越的位置跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信