Modeling viral evolution: A novel SIRSVIDE framework with application to SARS-CoV-2 dynamics

hLife Pub Date : 2024-05-01 DOI:10.1016/j.hlife.2024.03.006
Kaichun Jin , Xiaolu Tang , Zhaohui Qian , Zhiqiang Wu , Zifeng Yang , Tao Qian , Chitin Hon , Jian Lu
{"title":"Modeling viral evolution: A novel SIRSVIDE framework with application to SARS-CoV-2 dynamics","authors":"Kaichun Jin ,&nbsp;Xiaolu Tang ,&nbsp;Zhaohui Qian ,&nbsp;Zhiqiang Wu ,&nbsp;Zifeng Yang ,&nbsp;Tao Qian ,&nbsp;Chitin Hon ,&nbsp;Jian Lu","doi":"10.1016/j.hlife.2024.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding evolutionary trends in emerging viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is crucial for effective public health management and response. Nonetheless, extensive debates have arisen concerning viral evolutionary trends, particularly the interplay between transmissibility, pathogenicity, and immune escape. In this context, we have developed a novel computational model named SIRSVIDE (Susceptible-Infected-Recovered-Susceptible-Variation-Immune Decay-Immune Escape) to simulate the transmission and evolutionary dynamics of viral populations. Our simulation results indicate that under conditions of high mutation rates, elevated transmission rates, and larger susceptible host populations, viral populations exhibit prolonged increases in transmissibility and immune escape, accompanied by reductions in pathogenicity and noticeable short-term fluctuations. However, when the total susceptible population size and mutation rate decrease, substantial uncertainty in the evolutionary trends of viral populations becomes apparent. In summary, the SIRSVIDE model establishes a comprehensive framework for generating both short- and long-term viral epidemiological and evolutionary dynamics. The simulation outcomes align with existing evidence indicating that SARS-CoV-2 is undergoing selection for heightened transmissibility, decreased pathogenicity, and enhanced immune escape. Furthermore, the model sheds light on the possible evolutionary dynamics of other viruses.</p></div>","PeriodicalId":100609,"journal":{"name":"hLife","volume":"2 5","pages":"Pages 227-245"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949928324000221/pdfft?md5=7cf15c596cb5dd9fdf96fa3518689590&pid=1-s2.0-S2949928324000221-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"hLife","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949928324000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding evolutionary trends in emerging viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is crucial for effective public health management and response. Nonetheless, extensive debates have arisen concerning viral evolutionary trends, particularly the interplay between transmissibility, pathogenicity, and immune escape. In this context, we have developed a novel computational model named SIRSVIDE (Susceptible-Infected-Recovered-Susceptible-Variation-Immune Decay-Immune Escape) to simulate the transmission and evolutionary dynamics of viral populations. Our simulation results indicate that under conditions of high mutation rates, elevated transmission rates, and larger susceptible host populations, viral populations exhibit prolonged increases in transmissibility and immune escape, accompanied by reductions in pathogenicity and noticeable short-term fluctuations. However, when the total susceptible population size and mutation rate decrease, substantial uncertainty in the evolutionary trends of viral populations becomes apparent. In summary, the SIRSVIDE model establishes a comprehensive framework for generating both short- and long-term viral epidemiological and evolutionary dynamics. The simulation outcomes align with existing evidence indicating that SARS-CoV-2 is undergoing selection for heightened transmissibility, decreased pathogenicity, and enhanced immune escape. Furthermore, the model sheds light on the possible evolutionary dynamics of other viruses.

Abstract Image

病毒进化建模:新型 SIRSVIDE 框架在 SARS-CoV-2 动态中的应用
了解新出现病毒(如严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2))的进化趋势对于有效的公共卫生管理和应对措施至关重要。然而,关于病毒的进化趋势,尤其是传播性、致病性和免疫逃逸之间的相互作用,已经引起了广泛的争论。在此背景下,我们开发了一种名为 SIRSVIDE(易感-感染-复发-易感-变异-免疫衰减-免疫逃逸)的新型计算模型,用于模拟病毒种群的传播和进化动态。我们的模拟结果表明,在突变率高、传播率高和易感宿主群体较大的条件下,病毒种群的传播性和免疫逃逸表现出长期的增长,同时致病性降低,并出现明显的短期波动。然而,当易感人群的总规模和突变率降低时,病毒种群进化趋势的不确定性就会变得非常明显。总之,SIRSVIDE 模型建立了一个全面的框架,用于生成短期和长期的病毒流行病学和进化动态。模拟结果与现有证据相吻合,表明 SARS-CoV-2 正在经历提高传播性、降低致病性和增强免疫逃逸的选择过程。此外,该模型还揭示了其他病毒可能的进化动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信