Rui Xu , Min Zhang , Zhenkun Gao , Guo Zhao , Wei Ding , Shouming Wang , Peng Zhang , Xiang Liu , Jingjing Li
{"title":"Temperature field calculation of rail flash welding","authors":"Rui Xu , Min Zhang , Zhenkun Gao , Guo Zhao , Wei Ding , Shouming Wang , Peng Zhang , Xiang Liu , Jingjing Li","doi":"10.1016/j.hspr.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>The forging stage of rail flash welding has a decisive influence on joint strength, and the study of the temperature distribution in the process has an important role in further improving joint strength. In this paper, three calculation methods for the temperature field are given. First, the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement. Second, the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment. Third, Matlab software is used to calculate the temperature of the non-measured part. Finally, the temperature distribution function along the rail axis is fitted through the temperature measurement data. The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.</p></div>","PeriodicalId":100607,"journal":{"name":"High-speed Railway","volume":"2 2","pages":"Pages 116-121"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949867824000266/pdfft?md5=1118256472e5fe74cd160397164ccad6&pid=1-s2.0-S2949867824000266-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-speed Railway","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949867824000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The forging stage of rail flash welding has a decisive influence on joint strength, and the study of the temperature distribution in the process has an important role in further improving joint strength. In this paper, three calculation methods for the temperature field are given. First, the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement. Second, the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment. Third, Matlab software is used to calculate the temperature of the non-measured part. Finally, the temperature distribution function along the rail axis is fitted through the temperature measurement data. The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.