Tatiana N. Agaptseva, Anna R. Kussmaul, Mark S. Belakovskiy, Oleg I. Orlov
{"title":"Analog isolation projects: An opportunity for bench-testing technologies and products designed for long-distance space missions","authors":"Tatiana N. Agaptseva, Anna R. Kussmaul, Mark S. Belakovskiy, Oleg I. Orlov","doi":"10.1016/j.jsse.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Preparing to interplanetary missions and construction of planetary bases have become one of the major directions in piloted cosmonautics, which means that maintaining health and performance of cosmonauts and astronauts, as well as controlling their psychological status are becoming an increasingly important and urgent issue.</p><p>One of the IBMP's top priorities is research on the body's functional reserves and adaptation to various environmental factors, as well as the body's reactions to prolonged impact of negative space factors. Yet, it is not always possible to do so in a real space flight, due to deficient time allocated for scientific research, restrictions on the weight and dimensions of launched and descended cargo, and safety requirements for equipment on board of piloted spacecraft and space stations. Analog research projects which simulate specific negative space flight factors are a solution to this problem. For this reason, a special simulation stand was created - the Ground-Based Experimental Facility (or NEK). It was used in such world-famous international projects as SFINCSS, MARS500 and SIRIUS.</p><p>Model isolation experiments are a unique platform for testing various technologies and products for long-distance interplanetary flights. Thus, missions into the deep space will require a new approach to medical control and support facilities, as they should be more autonomous compared to the ones used in the orbit. New technologies may include intelligent data processing and analysis of medical data in the form of various gadgets (smart bracelets, glasses and watches, etc.), clothes with built-in sensors, devices for remote measurement of various health indicators, etc. An important element of any life support system is the food system, which should include technologies for cooking directly in space, as well as food with long shelf life. Isolation projects can be a useful tool for evaluating the possibility of using certain food products in space flight conditions. Among other promising directions are the research projects related to the assessment of microbial contamination directly inside the chamber facility, countermeasures against microbes and fungi, materials with antimicrobial and antifungal properties, etc.</p><p>Overall, analog experiments are an excellent opportunity to test a number of technologies and products for future space flights.</p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":"11 2","pages":"Pages 291-294"},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896724000430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Preparing to interplanetary missions and construction of planetary bases have become one of the major directions in piloted cosmonautics, which means that maintaining health and performance of cosmonauts and astronauts, as well as controlling their psychological status are becoming an increasingly important and urgent issue.
One of the IBMP's top priorities is research on the body's functional reserves and adaptation to various environmental factors, as well as the body's reactions to prolonged impact of negative space factors. Yet, it is not always possible to do so in a real space flight, due to deficient time allocated for scientific research, restrictions on the weight and dimensions of launched and descended cargo, and safety requirements for equipment on board of piloted spacecraft and space stations. Analog research projects which simulate specific negative space flight factors are a solution to this problem. For this reason, a special simulation stand was created - the Ground-Based Experimental Facility (or NEK). It was used in such world-famous international projects as SFINCSS, MARS500 and SIRIUS.
Model isolation experiments are a unique platform for testing various technologies and products for long-distance interplanetary flights. Thus, missions into the deep space will require a new approach to medical control and support facilities, as they should be more autonomous compared to the ones used in the orbit. New technologies may include intelligent data processing and analysis of medical data in the form of various gadgets (smart bracelets, glasses and watches, etc.), clothes with built-in sensors, devices for remote measurement of various health indicators, etc. An important element of any life support system is the food system, which should include technologies for cooking directly in space, as well as food with long shelf life. Isolation projects can be a useful tool for evaluating the possibility of using certain food products in space flight conditions. Among other promising directions are the research projects related to the assessment of microbial contamination directly inside the chamber facility, countermeasures against microbes and fungi, materials with antimicrobial and antifungal properties, etc.
Overall, analog experiments are an excellent opportunity to test a number of technologies and products for future space flights.