Characterization of a phenol-based model for denervation of the abdominal aorta and its implications for aortic remodeling

Q3 Medicine
Calvin Chao MD , Caitlyn Dang BS , Nidhi Reddy BA , Sara Alharbi MS , Jimmy Doan , Akashraj Karthikeyan , Brandon Applewhite PhD , Bin Jiang PhD
{"title":"Characterization of a phenol-based model for denervation of the abdominal aorta and its implications for aortic remodeling","authors":"Calvin Chao MD ,&nbsp;Caitlyn Dang BS ,&nbsp;Nidhi Reddy BA ,&nbsp;Sara Alharbi MS ,&nbsp;Jimmy Doan ,&nbsp;Akashraj Karthikeyan ,&nbsp;Brandon Applewhite PhD ,&nbsp;Bin Jiang PhD","doi":"10.1016/j.jvssci.2024.100202","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Sympathetic innervation plays a pivotal role in regulating cardiovascular health, and its dysregulation is implicated in a wide spectrum of cardiovascular diseases. This study seeks to evaluate the impact of denervation of the abdominal aorta on its morphology and wall homeostasis.</p></div><div><h3>Methods</h3><p>Male and female Sprague-Dawley rats (N = 12), aged 3 months, underwent midline laparotomy for infrarenal aorta exposure. Chemical denervation was induced via a one-time topical application of 10% phenol (n = 6), whereas sham controls received phosphate-buffered saline (n = 6). Animals were allowed to recover and subsequently were sacrificed after 6 months for analysis encompassing morphology, histology, and immunohistochemistry.</p></div><div><h3>Results</h3><p>At 6 months post-treatment, abdominal aortas subjected to phenol denervation still exhibited a significant reduction in nerve fiber density compared with sham controls. Denervated aortas demonstrated reduced intima-media thickness, increased elastin fragmentation, decreased expression of vascular smooth muscle proteins (α-SMA and MYH11), and elevated adventitial vascular density. Sex-stratified analyses revealed additional dimorphic responses, particularly in aortic collagen and medial cellular density in female animals.</p></div><div><h3>Conclusions</h3><p>Single-timepoint phenol-based chemical denervation induces alterations in abdominal aortic morphology and vascular remodeling over a 6-month period. These findings underscore the potential of the sympathetic nervous system as a therapeutic target for aortic pathologies.</p></div><div><h3>Clinical Relevance</h3><p>Aortic remodeling remains an important consideration in the pathogenesis of aortic disease, including occlusive, aneurysmal, and dissection disease states. The paucity of medical therapies for the treatment of aortic disease has driven considerable interest in elucidating the pathogenesis of these conditions; new therapeutic targets are critically needed. Here, we show significant remodeling after phenol-induced denervation with morphologic, histologic, and immunohistochemical features. Future investigations should integrate sympathetic dysfunction as a potential driver of pathologic aortic wall changes with additional consideration of the sympathetic nervous system as a therapeutic target.</p></div>","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"5 ","pages":"Article 100202"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666350324000130/pdfft?md5=a268668ec326d9c73541b8e91aa1791d&pid=1-s2.0-S2666350324000130-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JVS-vascular science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666350324000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Sympathetic innervation plays a pivotal role in regulating cardiovascular health, and its dysregulation is implicated in a wide spectrum of cardiovascular diseases. This study seeks to evaluate the impact of denervation of the abdominal aorta on its morphology and wall homeostasis.

Methods

Male and female Sprague-Dawley rats (N = 12), aged 3 months, underwent midline laparotomy for infrarenal aorta exposure. Chemical denervation was induced via a one-time topical application of 10% phenol (n = 6), whereas sham controls received phosphate-buffered saline (n = 6). Animals were allowed to recover and subsequently were sacrificed after 6 months for analysis encompassing morphology, histology, and immunohistochemistry.

Results

At 6 months post-treatment, abdominal aortas subjected to phenol denervation still exhibited a significant reduction in nerve fiber density compared with sham controls. Denervated aortas demonstrated reduced intima-media thickness, increased elastin fragmentation, decreased expression of vascular smooth muscle proteins (α-SMA and MYH11), and elevated adventitial vascular density. Sex-stratified analyses revealed additional dimorphic responses, particularly in aortic collagen and medial cellular density in female animals.

Conclusions

Single-timepoint phenol-based chemical denervation induces alterations in abdominal aortic morphology and vascular remodeling over a 6-month period. These findings underscore the potential of the sympathetic nervous system as a therapeutic target for aortic pathologies.

Clinical Relevance

Aortic remodeling remains an important consideration in the pathogenesis of aortic disease, including occlusive, aneurysmal, and dissection disease states. The paucity of medical therapies for the treatment of aortic disease has driven considerable interest in elucidating the pathogenesis of these conditions; new therapeutic targets are critically needed. Here, we show significant remodeling after phenol-induced denervation with morphologic, histologic, and immunohistochemical features. Future investigations should integrate sympathetic dysfunction as a potential driver of pathologic aortic wall changes with additional consideration of the sympathetic nervous system as a therapeutic target.

基于苯酚的腹主动脉去神经化模型的特征及其对主动脉重塑的影响
目的交感神经支配在调节心血管健康方面起着关键作用,其失调与多种心血管疾病有关。本研究旨在评估去神经支配腹主动脉对其形态学和壁稳态的影响。方法对 3 个月大的雌雄 Sprague-Dawley 大鼠(12 只)进行中线开腹手术,暴露肾下主动脉。通过一次性局部应用 10% 苯酚诱导化学去神经支配(n = 6),而假对照组则接受磷酸盐缓冲盐水(n = 6)。结果治疗后 6 个月,与假对照组相比,接受苯酚去神经支配的腹主动脉的神经纤维密度仍然显著降低。去神经支配的主动脉显示出内膜厚度减少、弹性蛋白碎片增加、血管平滑肌蛋白(α-SMA 和 MYH11)表达减少以及临近血管密度升高。结论基于苯酚的单时点化学去神经可在 6 个月内诱导腹主动脉形态和血管重塑的改变。临床意义主动脉重塑仍然是主动脉疾病(包括闭塞性、动脉瘤和夹层疾病)发病机制中的一个重要考虑因素。由于缺乏治疗主动脉疾病的药物疗法,人们对阐明这些疾病的发病机制产生了浓厚的兴趣;我们亟需新的治疗靶点。在这里,我们通过形态学、组织学和免疫组织化学特征显示了苯酚诱导去神经化后的明显重塑。未来的研究应将交感神经功能障碍作为主动脉壁病理变化的潜在驱动因素,并进一步考虑将交感神经系统作为治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信