Electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emission: Electrocatalysts, devices and mechanisms

IF 42.9 Q1 ELECTROCHEMISTRY
Jianwen Liu , Guodong Fu , Yuanfeng Liao , Wangji Zhang , Xiuan Xi , Fengzhan Si , Lei Wang , Jiujun Zhang , Xian-Zhu Fu , Jing-Li Luo
{"title":"Electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emission: Electrocatalysts, devices and mechanisms","authors":"Jianwen Liu ,&nbsp;Guodong Fu ,&nbsp;Yuanfeng Liao ,&nbsp;Wangji Zhang ,&nbsp;Xiuan Xi ,&nbsp;Fengzhan Si ,&nbsp;Lei Wang ,&nbsp;Jiujun Zhang ,&nbsp;Xian-Zhu Fu ,&nbsp;Jing-Li Luo","doi":"10.1016/j.esci.2024.100267","DOIUrl":null,"url":null,"abstract":"<div><div>The electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO<sub>2</sub> emissions integrates efficient energy conversions (hydrogen energy or electricity) and value-added chemical productions in one reaction system, which is essentially competitive in the carbon-neutral era. However, the activity, stability, and cost-effectiveness of electrocatalysts, as well as the safety, durability, and scalability of devices, are still challenging for their industrial applications. In addition, a lack of knowledge about relevant and detailed mechanisms restricts the further development of electrocatalysts and devices. A timely review of the electrocatalysts, devices, and mechanisms is essential to shed lights on the correct direction towards further development. In this review, the advances in the design of electrocatalysts, fabrication of devices, and understanding of reaction mechanisms are comprehensively summarized and analyzed. The major challenges are also discussed as well as the potential approaches to overcoming them. The insights for further development are provided to offer a sustainable and environmentally friendly approach to cogeneration of energy and chemicals production.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100267"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172400051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emissions integrates efficient energy conversions (hydrogen energy or electricity) and value-added chemical productions in one reaction system, which is essentially competitive in the carbon-neutral era. However, the activity, stability, and cost-effectiveness of electrocatalysts, as well as the safety, durability, and scalability of devices, are still challenging for their industrial applications. In addition, a lack of knowledge about relevant and detailed mechanisms restricts the further development of electrocatalysts and devices. A timely review of the electrocatalysts, devices, and mechanisms is essential to shed lights on the correct direction towards further development. In this review, the advances in the design of electrocatalysts, fabrication of devices, and understanding of reaction mechanisms are comprehensively summarized and analyzed. The major challenges are also discussed as well as the potential approaches to overcoming them. The insights for further development are provided to offer a sustainable and environmentally friendly approach to cogeneration of energy and chemicals production.

Abstract Image

电化学将小分子有机物转化为高附加值化学品和氢气/电力而不排放二氧化碳:电催化剂、装置和机制
小有机分子的电化学转化为增值化学品和氢/电而不排放二氧化碳,将高效的能源转换(氢能或电)和增值化学品生产集成在一个反应系统中,这在碳中和时代具有本质上的竞争力。然而,电催化剂的活性、稳定性和成本效益,以及设备的安全性、耐用性和可扩展性,仍然是其工业应用的挑战。此外,缺乏对相关机理的详细了解限制了电催化剂和器件的进一步发展。及时回顾电催化剂、装置和机制对进一步发展的正确方向至关重要。本文对电催化剂的设计、器件的制备以及反应机理的研究进展进行了综述和分析。还讨论了主要挑战以及克服这些挑战的潜在方法。提供进一步发展的见解,为能源和化学品生产的热电联产提供可持续和环境友好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信