Temporal changes in iodine-129 and radiocesium in the Canada Basin in the Arctic Ocean between 1993 and 2020

IF 1.5 4区 地球科学 Q3 ECOLOGY
{"title":"Temporal changes in iodine-129 and radiocesium in the Canada Basin in the Arctic Ocean between 1993 and 2020","authors":"","doi":"10.1016/j.polar.2024.101071","DOIUrl":null,"url":null,"abstract":"<div><p>The Arctic Ocean plays an important role in global climate and global warming through freshwater and heat exchange with subarctic waters. A better understanding of circulation time scales in the Arctic Ocean is essential to predict changes in climate and biogeochemical cycling in the Arctic Ocean. <sup>129</sup>I and <sup>137</sup>Cs, which have been discharged from the nuclear fuel-reprocessing facilities, have been employed to determine the time scale of the circulation in the Arctic Ocean. However, its temporal change has not been understood well. In 2017, 2019, and 2020, we measured <sup>129</sup>I and <sup>137</sup>Cs in the Canada Basin in the Arctic Ocean. Using our new and historical data, we discuss temporal changes in the circulation in the basin between 1993 and 2020. The tracer ages derived from the <sup>129</sup>I/<sup>137</sup>Cs ratio indicate that the transport of the Atlantic water into the Canada Basin was accelerated in 2020. This is consistent with results of recent studies that indicated the intensified inflow of the Atlantic water into the eastern Arctic Ocean in the late 2010s, which is termed “atlantification”. Our results confirmed the “atlantification” in the Canada Basin by temporal changes in the transient tracers for the first time.</p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1873965224000409/pdfft?md5=8643431f6cdeb965a42b67b83c174cbf&pid=1-s2.0-S1873965224000409-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224000409","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Arctic Ocean plays an important role in global climate and global warming through freshwater and heat exchange with subarctic waters. A better understanding of circulation time scales in the Arctic Ocean is essential to predict changes in climate and biogeochemical cycling in the Arctic Ocean. 129I and 137Cs, which have been discharged from the nuclear fuel-reprocessing facilities, have been employed to determine the time scale of the circulation in the Arctic Ocean. However, its temporal change has not been understood well. In 2017, 2019, and 2020, we measured 129I and 137Cs in the Canada Basin in the Arctic Ocean. Using our new and historical data, we discuss temporal changes in the circulation in the basin between 1993 and 2020. The tracer ages derived from the 129I/137Cs ratio indicate that the transport of the Atlantic water into the Canada Basin was accelerated in 2020. This is consistent with results of recent studies that indicated the intensified inflow of the Atlantic water into the eastern Arctic Ocean in the late 2010s, which is termed “atlantification”. Our results confirmed the “atlantification” in the Canada Basin by temporal changes in the transient tracers for the first time.

1993-2020 年间北冰洋加拿大海盆中碘-129 和放射性铯的时间变化
北冰洋通过与亚北极水域进行淡水和热交换,在全球气候和全球变暖方面发挥着重要作用。更好地了解北冰洋环流的时间尺度对于预测北冰洋气候和生物地球化学循环的变化至关重要。核燃料处理设施排放的 129I 和 137Cs 已被用于确定北冰洋环流的时间尺度。然而,人们对其时间变化还不甚了解。2017 年、2019 年和 2020 年,我们在北冰洋加拿大盆地测量了 129I 和 137Cs。利用我们的新数据和历史数据,我们讨论了 1993 年至 2020 年间该盆地环流的时间变化。根据 129I/137Cs 比值得出的示踪年龄表明,2020 年大西洋海水进入加拿大海盆的传输速度加快。这与最近的研究结果一致,这些研究表明大西洋海水在 2010 年代末加强流入北冰洋东部,即所谓的 "大西洋化"。我们的研究结果首次通过瞬态示踪剂的时间变化证实了加拿大盆地的 "大西洋化"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polar Science
Polar Science ECOLOGY-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
3.90
自引率
5.60%
发文量
46
期刊介绍: Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication. - Space and upper atmosphere physics - Atmospheric science/climatology - Glaciology - Oceanography/sea ice studies - Geology/petrology - Solid earth geophysics/seismology - Marine Earth science - Geomorphology/Cenozoic-Quaternary geology - Meteoritics - Terrestrial biology - Marine biology - Animal ecology - Environment - Polar Engineering - Humanities and social sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信