{"title":"Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020","authors":"","doi":"10.1016/j.aosl.2024.100489","DOIUrl":null,"url":null,"abstract":"<div><p>The Tibetan Plateau (TP) is a prevalent region for convection systems due to its unique thermodynamic forcing. This study investigated isolated deep convections (IDCs), which have a smaller spatial and temporal size than mesoscale convective systems (MCSs), over the TP in the rainy season (June–September) during 2001–2020. The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission. Results show that IDCs mainly concentrate over the southern TP. The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP, with an average 54.2. The initiation time of IDCs exhibits an obvious diurnal cycle, with the peak at 1400–1500 LST and the valley at 0900–1000 LST. Most IDCs last less than five hours and more than half appear for only one hour. IDCs generally have a cold cloud area of 7422.9 km<sup>2</sup>, containing a precipitation area of approximately 65%. The larger the IDC, the larger the fraction of intense precipitation it contains. IDCs contribute approximately 20%–30% to total precipitation and approximately 30%–40% to extreme precipitation over the TP, with a larger percentage in July and August than in June and September. In terms of spatial distribution, IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions. IDCs over the TP account for a larger fraction than MCSs, indicating the important role of IDCs over the region.</p><p>摘要</p><p>本文利用卫星观测资料, 研究了2001–2020年雨季 (6–9月) 青藏高原上孤立深对流 (Isolated deep convections, IDCs) 的气候特征. IDCs定义为比中尺度对流系统 (Mesoscale convective systems, MCSs) 时空尺度小的对流. 结果显示, 每年雨季青藏高原上平均的IDC数量为54.2个, 主要分布在高原的南部. IDCs的初始时刻呈现明显的日循环, 在下午14–15时为峰值, 在上午9–10时为谷值. 大部分IDCs持续时间在5小时以内, 超过一半的IDCs仅持续1小时. IDCs的冷云平均面积约为7422.9km<sup>2</sup>, 其中包含65%的降水面积. IDC面积越大, 包含的强降水范围也越大. IDCs对青藏高原总降水的贡献约为20%–30%, 对极端降水贡献约为30%–40%, 在7月和8月的占比大于6月和9月. 在空间分布方面, 青藏高原上IDCs对总降水和极端降水的贡献大于周围平原地区. 青藏高原上IDCs对降水的贡献大于MCSs, 表明IDCs在该地区起着重要作用.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100489"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000382/pdfft?md5=308d88abdcdef39b723facf7c55f9df7&pid=1-s2.0-S1674283424000382-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283424000382","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Tibetan Plateau (TP) is a prevalent region for convection systems due to its unique thermodynamic forcing. This study investigated isolated deep convections (IDCs), which have a smaller spatial and temporal size than mesoscale convective systems (MCSs), over the TP in the rainy season (June–September) during 2001–2020. The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission. Results show that IDCs mainly concentrate over the southern TP. The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP, with an average 54.2. The initiation time of IDCs exhibits an obvious diurnal cycle, with the peak at 1400–1500 LST and the valley at 0900–1000 LST. Most IDCs last less than five hours and more than half appear for only one hour. IDCs generally have a cold cloud area of 7422.9 km2, containing a precipitation area of approximately 65%. The larger the IDC, the larger the fraction of intense precipitation it contains. IDCs contribute approximately 20%–30% to total precipitation and approximately 30%–40% to extreme precipitation over the TP, with a larger percentage in July and August than in June and September. In terms of spatial distribution, IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions. IDCs over the TP account for a larger fraction than MCSs, indicating the important role of IDCs over the region.