{"title":"Electrospun Poly(ϵ-caprolactone) Nanofibers Containing Pomegranate Peel Extract and Bioactive Glass as Potential Wound Dressings","authors":"Ayşen Aktürk","doi":"10.17776/csj.1383556","DOIUrl":null,"url":null,"abstract":"This study focuses on the effect of pomegranate peel extract (PPE) as a natural medicinal substance and 45S5 bioglass (BG) particles as a bioactive material on the microstructure, antioxidant properties, and fibroblast cell cytotoxicity of biocompatible poly(ε-caprolactone) (PCL) nanofiber scaffolds. The hybrid nanofibers were fabricated via the electrospinning technique. The microstructure of nanofiber scaffolds was characterized by using scanning electron microscopy (SEM). The results indicated that the incorporation of PPE and BG particles did not change the morphology of the fibrous structure of the PCL nanofiber scaffolds. The DPPH analysis was performed to determine the antioxidant properties of nanofiber scaffolds and demonstrated that the incorporation of PPE improves the antioxidant properties of scaffolds. Cell cytotoxicity studies using fibroblast L929 cells also showed that high cell viability values were observed for hybrid PPE and BG loaded PCL nanofiber scaffolds. The findings proved that the integration of PPE and BG particles into PCL nanofibers yielded favorable characteristics suitable for wound dressing purposes, involving improved antioxidant capacity.","PeriodicalId":10906,"journal":{"name":"Cumhuriyet Science Journal","volume":"39 S181","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cumhuriyet Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17776/csj.1383556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the effect of pomegranate peel extract (PPE) as a natural medicinal substance and 45S5 bioglass (BG) particles as a bioactive material on the microstructure, antioxidant properties, and fibroblast cell cytotoxicity of biocompatible poly(ε-caprolactone) (PCL) nanofiber scaffolds. The hybrid nanofibers were fabricated via the electrospinning technique. The microstructure of nanofiber scaffolds was characterized by using scanning electron microscopy (SEM). The results indicated that the incorporation of PPE and BG particles did not change the morphology of the fibrous structure of the PCL nanofiber scaffolds. The DPPH analysis was performed to determine the antioxidant properties of nanofiber scaffolds and demonstrated that the incorporation of PPE improves the antioxidant properties of scaffolds. Cell cytotoxicity studies using fibroblast L929 cells also showed that high cell viability values were observed for hybrid PPE and BG loaded PCL nanofiber scaffolds. The findings proved that the integration of PPE and BG particles into PCL nanofibers yielded favorable characteristics suitable for wound dressing purposes, involving improved antioxidant capacity.