Dynamic Contact Characteristics Analysis of Heavy-duty Track Rollers

IF 1 Q4 ENGINEERING, MECHANICAL
Bijuan Yan, Zhiheng Zhang, HaiJing Zhang, WenJun Zhang, Zhangda Zhao, Tao Yang
{"title":"Dynamic Contact Characteristics Analysis of Heavy-duty Track Rollers","authors":"Bijuan Yan, Zhiheng Zhang, HaiJing Zhang, WenJun Zhang, Zhangda Zhao, Tao Yang","doi":"10.15282/ijame.21.1.2024.16.0862","DOIUrl":null,"url":null,"abstract":"As an important component of the crawler walking device, the track roller needs to withstand strong impact and is prone to failure, which can lead to serious economic losses. This paper focuses on the track roller of the spreader as the research subject and investigates the dynamic contact characteristics between the track roller and the track plate. Using RecurDyn software, a virtual prototype model of the crawler walking device is established to analyze the variation in a vertical dynamic load of the track roller under different working conditions. Simultaneously, a finite element model of the contact between the track roller and the track plate is developed using Ansys Workbench, and its accuracy is verified using Hertz contact theory. Finally, the study discusses various influencing factors on the contact characteristics, including load, curvature of the contacting bodies, and material yield strength. The results indicate that the track rollers experience the highest dynamic load when climbing a slope, reaching a maximum load of 1191.44 kN. Moreover, the maximum contact stress is 1750.4 MPa, and the maximum Mises stress is 921.34 MPa during this operation.  Importantly, when the load reaches 1218 kN, the maximum Mises stress of the track roller is 930.2 MPa, which may lead to roller failure after prolonged use. These findings provide valuable insights for the design and optimization of heavy-duty track rollers and offer significant assistance for various tracked vehicles.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.21.1.2024.16.0862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As an important component of the crawler walking device, the track roller needs to withstand strong impact and is prone to failure, which can lead to serious economic losses. This paper focuses on the track roller of the spreader as the research subject and investigates the dynamic contact characteristics between the track roller and the track plate. Using RecurDyn software, a virtual prototype model of the crawler walking device is established to analyze the variation in a vertical dynamic load of the track roller under different working conditions. Simultaneously, a finite element model of the contact between the track roller and the track plate is developed using Ansys Workbench, and its accuracy is verified using Hertz contact theory. Finally, the study discusses various influencing factors on the contact characteristics, including load, curvature of the contacting bodies, and material yield strength. The results indicate that the track rollers experience the highest dynamic load when climbing a slope, reaching a maximum load of 1191.44 kN. Moreover, the maximum contact stress is 1750.4 MPa, and the maximum Mises stress is 921.34 MPa during this operation.  Importantly, when the load reaches 1218 kN, the maximum Mises stress of the track roller is 930.2 MPa, which may lead to roller failure after prolonged use. These findings provide valuable insights for the design and optimization of heavy-duty track rollers and offer significant assistance for various tracked vehicles.
重型滚轮的动态接触特性分析
滚轮作为履带行走装置的重要部件,需要承受强大的冲击力,容易发生故障,造成严重的经济损失。本文以吊具的履带滚轮为研究对象,研究履带滚轮与履带板的动态接触特性。利用 RecurDyn 软件,建立了履带行走装置的虚拟原型模型,分析了不同工况下滚轮垂直动载荷的变化。同时,使用 Ansys Workbench 建立了滚轮和履带板之间接触的有限元模型,并使用赫兹接触理论验证了其准确性。最后,研究讨论了影响接触特性的各种因素,包括载荷、接触体曲率和材料屈服强度。结果表明,履带滚子在爬坡时承受的动载荷最大,达到 1191.44 kN。此外,在此操作过程中,最大接触应力为 1750.4 兆帕,最大米塞斯应力为 921.34 兆帕。 重要的是,当载荷达到 1218 kN 时,滚轮的最大米氏应力为 930.2 MPa,这可能导致滚轮在长时间使用后失效。这些发现为重型滚轮的设计和优化提供了有价值的见解,并为各种履带车辆提供了重要帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信