M. Eaki, K. Kadirgama, D. Ramasamy, W. S. Wan harun, Khaled Abou El Hossein, L. Samylingam, C.K. Kok
{"title":"Enhancing Machining performance in Stainless Steel Machining using MXene Coolant: A Detailed Examination","authors":"M. Eaki, K. Kadirgama, D. Ramasamy, W. S. Wan harun, Khaled Abou El Hossein, L. Samylingam, C.K. Kok","doi":"10.15282/ijame.21.1.2024.04.0850","DOIUrl":null,"url":null,"abstract":"Metal cutting, a complex process in manufacturing, involves various factors that significantly affect the quality of the final product. Notably, the turning process is crucial, with outcomes that heavily depend on multiple machining parameters. These parameters encompass speed, depth of cut, feed rate, the type of coolant used (specifically, high heat transfer MXene coolant), and insert types, among others. The material of the workpiece is also a critical factor in the metal-cutting operation. This study focuses on achieving optimal surface quality and minimizing cutting forces in the turning process. It recognizes the substantial impact of numerous process parameters, directly or indirectly affecting the product's surface roughness and cutting forces. Understanding these optimal parameters can lower machining costs and improve product quality. Our research concentrates on turning a stainless-steel alloy workpiece using a carbide insert tool. We employ the Response Surface Method (RSM) to optimize cutting parameters within a set range of cutting speed (100, 125, 150 m/min), feed rate (0.1, 0.2, 0.3 mm/rev), and depth of cut (0.4, 0.8, 1.2 mm). Additionally, we use various tool geometries and the RSM design of experiments to enhance and analyze the multi-response parameters of surface roughness and tool life. Optimal machining parameters for MXene-NFC involve a cutting speed of 140 m/min, a feed rate of 0.05 mm/rev, and a depth of cut of 0.5 mm. These settings ensure minimal surface roughness, maximum tool life, and the greatest total length of cut, achieving a composite desirability of 0.695.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.21.1.2024.04.0850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal cutting, a complex process in manufacturing, involves various factors that significantly affect the quality of the final product. Notably, the turning process is crucial, with outcomes that heavily depend on multiple machining parameters. These parameters encompass speed, depth of cut, feed rate, the type of coolant used (specifically, high heat transfer MXene coolant), and insert types, among others. The material of the workpiece is also a critical factor in the metal-cutting operation. This study focuses on achieving optimal surface quality and minimizing cutting forces in the turning process. It recognizes the substantial impact of numerous process parameters, directly or indirectly affecting the product's surface roughness and cutting forces. Understanding these optimal parameters can lower machining costs and improve product quality. Our research concentrates on turning a stainless-steel alloy workpiece using a carbide insert tool. We employ the Response Surface Method (RSM) to optimize cutting parameters within a set range of cutting speed (100, 125, 150 m/min), feed rate (0.1, 0.2, 0.3 mm/rev), and depth of cut (0.4, 0.8, 1.2 mm). Additionally, we use various tool geometries and the RSM design of experiments to enhance and analyze the multi-response parameters of surface roughness and tool life. Optimal machining parameters for MXene-NFC involve a cutting speed of 140 m/min, a feed rate of 0.05 mm/rev, and a depth of cut of 0.5 mm. These settings ensure minimal surface roughness, maximum tool life, and the greatest total length of cut, achieving a composite desirability of 0.695.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.