{"title":"Tribology Evaluation on a Four-Ball Tribometer Lubricated by Al2O3/PAG Nanolubricants","authors":"Safril, W.H. Azmi, M. Z. Sharif, N. Zawawi","doi":"10.15282/ijame.21.1.2024.09.0855","DOIUrl":null,"url":null,"abstract":"Nanolubricants can improve the tribological properties for application in automotive systems. By reducing the friction rate of the internal components with nanolubricants, the service life of a compressor used in automotive air conditioning (AAC) can be extended. The investigation aims to determine the optimal volume concentration of nanolubricants for achieving the highest performance in tribological properties. Al2O3 nanoparticles dispersed in a polyalkylene glycol (PAG ND12) base at volume concentrations of 0.01%, 0.03%, and 0.05% were investigated to improve the lubrication system in the AAC compressor. The stability investigations were carried out by comparing absorbance conditions using a UV-Vis Spectrophotometer at each volume concentration for 210 days. Koehler's four-ball tribometer was used to measure coefficient of friction (COF) and friction torque at a load of 40.0 kg and a speed of 1200 rpm. The stability study of nanolubricant yielded average absorbance values of 0.752, 0.755, and 0.684, respectively. The average COF values of the nanolubricants of 0.01%, 0.03%, and 0.05% were 0.104, 0.078, and 0.117, while the pure lubricant was 0.095. Further investigation on friction torque resulted in a decrease in the pure lubricant of 0.064%, and for nanolubricant Al2O3/PAG ND12, a decrease of 0.087%, 0.057%, and 0.092%, respectively. The results indicated that a concentration of 0.03% produced the greatest reduction in COF and torque, namely 0.0078% and 0.0578%, correspondingly. Therefore, it is recommended to use Al2O3/PAG ND12 nanolubricant at a volume concentration of 0.03% because it is the most optimal in terms of stability and has the highest COF and frictional torque reduction.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 28","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.21.1.2024.09.0855","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanolubricants can improve the tribological properties for application in automotive systems. By reducing the friction rate of the internal components with nanolubricants, the service life of a compressor used in automotive air conditioning (AAC) can be extended. The investigation aims to determine the optimal volume concentration of nanolubricants for achieving the highest performance in tribological properties. Al2O3 nanoparticles dispersed in a polyalkylene glycol (PAG ND12) base at volume concentrations of 0.01%, 0.03%, and 0.05% were investigated to improve the lubrication system in the AAC compressor. The stability investigations were carried out by comparing absorbance conditions using a UV-Vis Spectrophotometer at each volume concentration for 210 days. Koehler's four-ball tribometer was used to measure coefficient of friction (COF) and friction torque at a load of 40.0 kg and a speed of 1200 rpm. The stability study of nanolubricant yielded average absorbance values of 0.752, 0.755, and 0.684, respectively. The average COF values of the nanolubricants of 0.01%, 0.03%, and 0.05% were 0.104, 0.078, and 0.117, while the pure lubricant was 0.095. Further investigation on friction torque resulted in a decrease in the pure lubricant of 0.064%, and for nanolubricant Al2O3/PAG ND12, a decrease of 0.087%, 0.057%, and 0.092%, respectively. The results indicated that a concentration of 0.03% produced the greatest reduction in COF and torque, namely 0.0078% and 0.0578%, correspondingly. Therefore, it is recommended to use Al2O3/PAG ND12 nanolubricant at a volume concentration of 0.03% because it is the most optimal in terms of stability and has the highest COF and frictional torque reduction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.