Machine Learning Model for Processing Aerospace Images of the Earthʼs Surface

T. Starovoitova, I. A. Starovoitov
{"title":"Machine Learning Model for Processing Aerospace Images of the Earthʼs Surface","authors":"T. Starovoitova, I. A. Starovoitov","doi":"10.35596/1729-7648-2024-30-1-63-70","DOIUrl":null,"url":null,"abstract":"The article presents the specifics of acquisition and processing aerospace images of the earth's surface in the context of their digitalization for creating accurate topographic maps and plans in digital and graphic formats. A data processing model has been developed based on the Python programming language and neural networks, the purpose of which is to improve the recognition of objects in aerospace images. The methodology for creating a machine learning model includes defining the goals and objectives of the model, selecting an appropriate learning algorithm (in this case, neural networks), collecting and preparing a data set, tuning the model, and testing on a test data set. The shortcomings of existing data processing algorithms are also discussed and an approach is presented to improve the efficiency of data processing and analysis.","PeriodicalId":186498,"journal":{"name":"Digital Transformation","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Transformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35596/1729-7648-2024-30-1-63-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents the specifics of acquisition and processing aerospace images of the earth's surface in the context of their digitalization for creating accurate topographic maps and plans in digital and graphic formats. A data processing model has been developed based on the Python programming language and neural networks, the purpose of which is to improve the recognition of objects in aerospace images. The methodology for creating a machine learning model includes defining the goals and objectives of the model, selecting an appropriate learning algorithm (in this case, neural networks), collecting and preparing a data set, tuning the model, and testing on a test data set. The shortcomings of existing data processing algorithms are also discussed and an approach is presented to improve the efficiency of data processing and analysis.
处理地球表面航空航天图像的机器学习模型
文章介绍了在地球表面航空航天图像数字化背景下获取和处理这些图像的具体情况,以便以数字和图形格式绘制精确的地形图和平面图。基于 Python 编程语言和神经网络开发了一个数据处理模型,其目的是提高航空航天图像中物体的识别能力。创建机器学习模型的方法包括定义模型的目标和目的、选择合适的学习算法(在本例中为神经网络)、收集和准备数据集、调整模型以及在测试数据集上进行测试。此外,还讨论了现有数据处理算法的不足之处,并提出了一种提高数据处理和分析效率的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信