Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2024-03-25 DOI:10.1002/imt2.187
Tianyi Qiu, Josep Peñuelas, Yinglong Chen, Jordi Sardans, Jialuo Yu, Zhiyuan Xu, Qingliang Cui, Ji Liu, Yongxing Cui, Shuling Zhao, Jing Chen, Yunqiang Wang, Linchuan Fang
{"title":"Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem","authors":"Tianyi Qiu,&nbsp;Josep Peñuelas,&nbsp;Yinglong Chen,&nbsp;Jordi Sardans,&nbsp;Jialuo Yu,&nbsp;Zhiyuan Xu,&nbsp;Qingliang Cui,&nbsp;Ji Liu,&nbsp;Yongxing Cui,&nbsp;Shuling Zhao,&nbsp;Jing Chen,&nbsp;Yunqiang Wang,&nbsp;Linchuan Fang","doi":"10.1002/imt2.187","DOIUrl":null,"url":null,"abstract":"<p>The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a <i>Robinia pseudoacacia</i> plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by <i>R. pseudoacacia</i>, assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among <i>R. pseudoacacia</i>, AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with <i>R. pseudoacacia</i> in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 3","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a Robinia pseudoacacia plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by R. pseudoacacia, assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among R. pseudoacacia, AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with R. pseudoacacia in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.

Abstract Image

在易受侵蚀的生态系统中,丛枝菌根真菌的相互作用是根相关微生物群支持斜坡多功能性的桥梁
多样化的土壤微生物群在恢复侵蚀引起的退化土地中的作用已得到广泛认可。然而,共生的丛枝菌根(AM)真菌、根瘤菌和异养菌之间的促进性相互作用仍不清楚,而这种相互作用支撑着侵蚀生态系统的多种功能。在这里,我们利用定量微生物区系剖析和生态网络分析,探讨了黄土高原刺槐种植园侵蚀斜坡上根系相关微生物区系的多样性和生物关联与多功能性之间的相互作用。我们发现,不同坡位的坡面多功能性存在明显差异,这与土壤磷和水分等限制性资源的变化有关。为了应对磷的限制,R. pseudoacacia 吸收了 AM 真菌,并在跨领域网络中扮演了关键的基石和连接者的角色。此外,AM 真菌促进了细菌和根瘤菌群落的组装和组成,共同推动了斜坡的多功能性。R.pseudoacacia、AM 真菌和根瘤菌之间的共生关系通过加强对难分解化合物的分解、提高钾矿化潜力和优化微生物新陈代谢促进了斜坡的多功能性。总之,我们的研究结果凸显了以AM真菌为中心、与假巴西杉相关的微生物群在侵蚀地貌的功能传递中的关键作用,为易受侵蚀地区退化生态系统的可持续恢复提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信