B. Yifru, Kyoung Jae Lim, J. Bae, Woonji Park, Seoro Lee
{"title":"A hybrid deep learning approach for streamflow prediction utilizing watershed memory and process-based modeling","authors":"B. Yifru, Kyoung Jae Lim, J. Bae, Woonji Park, Seoro Lee","doi":"10.2166/nh.2024.016","DOIUrl":null,"url":null,"abstract":"\n Accurate streamflow prediction is essential for optimal water management and disaster preparedness. While data-driven methods’ performance often surpasses process-based models, concerns regarding their ‘black-box’ nature persist. Hybrid models, integrating domain knowledge and process modeling into a data-driven framework, offer enhanced streamflow prediction capabilities. This study investigated watershed memory and process modeling-based hybridizing approaches across diverse hydrological regimes – Korean and Ethiopian watersheds. Following watershed memory analysis, the Soil and Water Assessment Tool (SWAT) was calibrated using the recession constant and other relevant parameters. Three hybrid models, incorporating watershed memory and residual error, were developed and evaluated against standalone long short-term memory (LSTM) models. Hybrids outperformed the standalone LSTM across all watersheds. The memory-based approach exhibited superior and consistent performance across training, evaluation periods, and regions, achieving 17–66% Nash–Sutcliffe efficiency coefficient improvement. The residual error-based technique showed varying performance across regions. While hybrids improved extreme event predictions, particularly peak flows, all models struggled at low flow. Korean watersheds’ significant prediction improvements highlight the hybrid models’ effectiveness in regions with pronounced temporal hydrological variability. This study underscores the importance of selecting a specific hybrid approach based on the desired objectives rather than solely relying on statistical metrics that often reflect average performance.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2024.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate streamflow prediction is essential for optimal water management and disaster preparedness. While data-driven methods’ performance often surpasses process-based models, concerns regarding their ‘black-box’ nature persist. Hybrid models, integrating domain knowledge and process modeling into a data-driven framework, offer enhanced streamflow prediction capabilities. This study investigated watershed memory and process modeling-based hybridizing approaches across diverse hydrological regimes – Korean and Ethiopian watersheds. Following watershed memory analysis, the Soil and Water Assessment Tool (SWAT) was calibrated using the recession constant and other relevant parameters. Three hybrid models, incorporating watershed memory and residual error, were developed and evaluated against standalone long short-term memory (LSTM) models. Hybrids outperformed the standalone LSTM across all watersheds. The memory-based approach exhibited superior and consistent performance across training, evaluation periods, and regions, achieving 17–66% Nash–Sutcliffe efficiency coefficient improvement. The residual error-based technique showed varying performance across regions. While hybrids improved extreme event predictions, particularly peak flows, all models struggled at low flow. Korean watersheds’ significant prediction improvements highlight the hybrid models’ effectiveness in regions with pronounced temporal hydrological variability. This study underscores the importance of selecting a specific hybrid approach based on the desired objectives rather than solely relying on statistical metrics that often reflect average performance.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.