Computational Bibliometric Analysis of Research on Bloom Digital Taxonomy and Critical Thinking

Gunarso Gunarso, Muhammad Syafri Syamsudin, Muhammad Nursalman, Enjang Ali Nurdin, Anggi Fitri
{"title":"Computational Bibliometric Analysis of Research on Bloom Digital Taxonomy and Critical Thinking","authors":"Gunarso Gunarso, Muhammad Syafri Syamsudin, Muhammad Nursalman, Enjang Ali Nurdin, Anggi Fitri","doi":"10.35445/alishlah.v16i1.4426","DOIUrl":null,"url":null,"abstract":"One important step towards understanding the development, trends, and effects in the context of contemporary education is to conduct a computational bibliometric analysis of research focused on Bloom Digital Taxonomy and elements of critical thinking studies. This research was conducted to perform a bibliometric analysis on the digital Bloom's taxonomy and critical thinking. The research method employed was bibliometric analysis, utilizing machine learning to map the data. The research comprised four stages of bibliometric analysis, namely: (a) data retrieval through the application of Publish or Perish, (b) data processing, (c) data mapping using machine learning, and (d) data analysis of the mapping using the R programming language. The research materials were published between 2015 and collected from the Google Scholar database in 2023. The search process involved the usage of the keywords \"Taxonomy Bloom Digital\" and \"Critical Thinking.\" The results demonstrated that bibliometric analysis and mapping of 500 publications using machine learning enabled a deeper understanding of the development, trends, and crucial aspects of research in this field. By employing a bibliometric analysis approach and implementing machine learning, this study contributes to the comprehension of digital Bloom's taxonomy and critical thinking while providing an overview of research trends.","PeriodicalId":515926,"journal":{"name":"AL-ISHLAH: Jurnal Pendidikan","volume":"109 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AL-ISHLAH: Jurnal Pendidikan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35445/alishlah.v16i1.4426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One important step towards understanding the development, trends, and effects in the context of contemporary education is to conduct a computational bibliometric analysis of research focused on Bloom Digital Taxonomy and elements of critical thinking studies. This research was conducted to perform a bibliometric analysis on the digital Bloom's taxonomy and critical thinking. The research method employed was bibliometric analysis, utilizing machine learning to map the data. The research comprised four stages of bibliometric analysis, namely: (a) data retrieval through the application of Publish or Perish, (b) data processing, (c) data mapping using machine learning, and (d) data analysis of the mapping using the R programming language. The research materials were published between 2015 and collected from the Google Scholar database in 2023. The search process involved the usage of the keywords "Taxonomy Bloom Digital" and "Critical Thinking." The results demonstrated that bibliometric analysis and mapping of 500 publications using machine learning enabled a deeper understanding of the development, trends, and crucial aspects of research in this field. By employing a bibliometric analysis approach and implementing machine learning, this study contributes to the comprehension of digital Bloom's taxonomy and critical thinking while providing an overview of research trends.
对布鲁姆数字分类法和批判性思维研究的计算文献计量分析
要了解当代教育背景下的发展、趋势和影响,重要的一步是对以布鲁姆数字分类法和批判性思维研究要素为重点的研究进行计算文献计量分析。本研究对布鲁姆数字分类法和批判性思维进行了文献计量分析。采用的研究方法是文献计量分析,利用机器学习绘制数据图。研究包括文献计量分析的四个阶段,即:(a)通过应用 "出版或毁灭 "进行数据检索;(b)数据处理;(c)利用机器学习进行数据映射;以及(d)利用 R 编程语言对映射进行数据分析。这些研究资料发表于 2015 年,并于 2023 年从谷歌学术数据库中收集。搜索过程中使用了关键词 "布卢姆数字分类学 "和 "批判性思维"。结果表明,利用机器学习对 500 篇出版物进行文献计量分析和绘图,能够更深入地了解该领域研究的发展、趋势和关键方面。通过采用文献计量分析方法和机器学习,本研究有助于理解数字布鲁姆分类法和批判性思维,同时提供了研究趋势概览。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信