{"title":"Amelioration in nanobiosensors for the control of plant diseases: current status and future challenges","authors":"Verinder Virk, Himani Deepak, Khushbu Taneja, Rishita Srivastava, Sadhana Giri","doi":"10.3389/fnano.2024.1310165","DOIUrl":null,"url":null,"abstract":"The increase in global population has had a tremendous impact on sustainable agri-food practices. With the growth in world population, various modern technologies are being utilized that more often result in the opening of tremendous opportunities in the agriculture and food sectors. Nanotechnology is used in agri-food sectors for a variety of purposes, including enhancing flavor, pest/pathogen diagnosis, production, processing, storage, packaging, and transportation of agricultural products. Plant pathogenic microorganisms including bacteria, viruses, fungi, and nematodes have a significant impact on the global economy. In particular, advances in nanotechnology, including nanobiosensors, have been used in the detection of plant diseases and pathogens, the evaluation and examination of infections caused by microorganisms, the management of diseases and, thus, the promotion of food security. Apart from the management of plant diseases, nanobiosensors offer better opportunities for sustainable agri-food production by controlling physical, chemical, and biological processes, thus improving food safety and the agricultural economy. This review outlines the application of nano-integrated nanobiosensors for better agricultural and food practices.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2024.1310165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The increase in global population has had a tremendous impact on sustainable agri-food practices. With the growth in world population, various modern technologies are being utilized that more often result in the opening of tremendous opportunities in the agriculture and food sectors. Nanotechnology is used in agri-food sectors for a variety of purposes, including enhancing flavor, pest/pathogen diagnosis, production, processing, storage, packaging, and transportation of agricultural products. Plant pathogenic microorganisms including bacteria, viruses, fungi, and nematodes have a significant impact on the global economy. In particular, advances in nanotechnology, including nanobiosensors, have been used in the detection of plant diseases and pathogens, the evaluation and examination of infections caused by microorganisms, the management of diseases and, thus, the promotion of food security. Apart from the management of plant diseases, nanobiosensors offer better opportunities for sustainable agri-food production by controlling physical, chemical, and biological processes, thus improving food safety and the agricultural economy. This review outlines the application of nano-integrated nanobiosensors for better agricultural and food practices.