Energetics of a pulsed quantum battery

Charles Andrew Downing, M. S. Ukhtary
{"title":"Energetics of a pulsed quantum battery","authors":"Charles Andrew Downing, M. S. Ukhtary","doi":"10.1209/0295-5075/ad2e79","DOIUrl":null,"url":null,"abstract":"\n The challenge of storing energy efficiently and sustainably is highly prominent within modern scientific investigations. Due to the ongoing trend of miniaturization, the design of expressly quantum storage devices is itself a crucial task within current quantum technological research. Here we provide a transparent analytic model of a two-component quantum battery, composed of a charger and an energy holder, which is driven by a short laser pulse. We provide simple expressions for the energy stored in the battery, the maximum amount of work which can be extracted, both the instantaneous and the average powers, and the relevant charging times. This allows us to discuss explicitly the optimal design of the battery in terms of the driving strength of the pulse, the coupling between the charger and the holder, and the inevitable energy loss into the environment. We anticipate that our theory can act as a helpful guide for the nascent experimental work building and characterizing the first generation of truly quantum batteries.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad2e79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of storing energy efficiently and sustainably is highly prominent within modern scientific investigations. Due to the ongoing trend of miniaturization, the design of expressly quantum storage devices is itself a crucial task within current quantum technological research. Here we provide a transparent analytic model of a two-component quantum battery, composed of a charger and an energy holder, which is driven by a short laser pulse. We provide simple expressions for the energy stored in the battery, the maximum amount of work which can be extracted, both the instantaneous and the average powers, and the relevant charging times. This allows us to discuss explicitly the optimal design of the battery in terms of the driving strength of the pulse, the coupling between the charger and the holder, and the inevitable energy loss into the environment. We anticipate that our theory can act as a helpful guide for the nascent experimental work building and characterizing the first generation of truly quantum batteries.
脉冲量子电池的能量学
在现代科学研究中,高效、可持续地储存能量是一个非常突出的挑战。由于微型化趋势的不断发展,设计简易的量子存储设备本身就是当前量子技术研究中的一项重要任务。在这里,我们提供了一个透明的双组分量子电池分析模型,它由充电器和能量储存器组成,由短激光脉冲驱动。我们提供了电池中存储的能量、可提取的最大功、瞬时功率和平均功率以及相关充电时间的简单表达式。这样,我们就可以根据脉冲的驱动强度、充电器和支架之间的耦合以及不可避免的环境能量损失,明确讨论电池的最佳设计。我们预计,我们的理论可以为建立和表征第一代真正量子电池的新生实验工作提供有益的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信