Input-Output Analysis on Pia Saronde Production Process Scheduling with Invariant Max-Plus Linear System

Sunarwin Ismail, Nurwan, Muhammad Rezky F. Payu, Lailany Yahya, Djihad Wungguli, Asriadi
{"title":"Input-Output Analysis on Pia Saronde Production Process Scheduling with Invariant Max-Plus Linear System","authors":"Sunarwin Ismail, Nurwan, Muhammad Rezky F. Payu, Lailany Yahya, Djihad Wungguli, Asriadi","doi":"10.18502/kls.v8i1.15545","DOIUrl":null,"url":null,"abstract":"Max-plus algebra is one of the analysis methods of discrete event systems which has many applications on systems theory and graph theory. Max-plus algebra is a set of real numbers R combined with =-∞ equipped with operations max (⊕) and plus (⊗), can be denoted [(R]_ε,⊕,⊗) with [(R]_ε=R⋃{ε}) . The production process of pia saronde is one of the problems that can be analyzed using max-plus algebra. The production process of this product is sequentially carried out by making skin dough, filling, baking, cooling, and packaging the pia. The max-plus algebra theory was used in this research to determine the optimal time in the production scheduling of pia saronde. Meanwhile, the Invarian Max-plus Linear System (IMLS), max-plus algebraic theory, and the Discrete Event System (DES) were used to solve the production-related problems. IMLS analysis produces eigenvalues that represent the optimum production time. The results obtained the max-plus algebra model of x(k+1)=A x(k), where A =A⊕B⊗C and y=K⊗x_0⊕H⊗u for input-output IMLS analysis. From the matrix A, eigenvalue λ= 226 and eigenvector v=[278 278 278 279 299 302 324 356 488] were obtained. Furthermore, the value of λ describes the pia production schedule at a time span of 226 minutes. \nKeywords: input-output analysis, pia saronde, scheduling, max-plus linear system","PeriodicalId":17898,"journal":{"name":"KnE Life Sciences","volume":"30 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/kls.v8i1.15545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Max-plus algebra is one of the analysis methods of discrete event systems which has many applications on systems theory and graph theory. Max-plus algebra is a set of real numbers R combined with =-∞ equipped with operations max (⊕) and plus (⊗), can be denoted [(R]_ε,⊕,⊗) with [(R]_ε=R⋃{ε}) . The production process of pia saronde is one of the problems that can be analyzed using max-plus algebra. The production process of this product is sequentially carried out by making skin dough, filling, baking, cooling, and packaging the pia. The max-plus algebra theory was used in this research to determine the optimal time in the production scheduling of pia saronde. Meanwhile, the Invarian Max-plus Linear System (IMLS), max-plus algebraic theory, and the Discrete Event System (DES) were used to solve the production-related problems. IMLS analysis produces eigenvalues that represent the optimum production time. The results obtained the max-plus algebra model of x(k+1)=A x(k), where A =A⊕B⊗C and y=K⊗x_0⊕H⊗u for input-output IMLS analysis. From the matrix A, eigenvalue λ= 226 and eigenvector v=[278 278 278 279 299 302 324 356 488] were obtained. Furthermore, the value of λ describes the pia production schedule at a time span of 226 minutes. Keywords: input-output analysis, pia saronde, scheduling, max-plus linear system
使用不变最大加线性系统的 Pia Saronde 生产流程调度的投入产出分析
最大加代数是离散事件系统的分析方法之一,在系统论和图论中有许多应用。最大-加代数是一组实数 R 与 =-∞ 结合后所具有的最大(⊕)和加(⊗)运算,可表示为[(R]_ε,⊕,⊗)与[(R]_ε=R⋃{ε})。pia saronde 的生产过程是可以用 max-plus 代数来分析的问题之一。该产品的生产过程依次为制作面皮、馅料、烘烤、冷却和包装。本研究采用了最大加代数理论来确定 pia saronde 生产计划的最佳时间。同时,还使用了因瓦里安最大加线性系统(IMLS)、最大加代数理论和离散事件系统(DES)来解决与生产相关的问题。IMLS 分析得出的特征值代表最佳生产时间。结果得到了最大加代数模型 x(k+1)=A x(k),其中 A =A⊕B⊗C 和 y=K⊗x_0⊕H⊗u 用于投入产出 IMLS 分析。从矩阵 A 中得到特征值 λ= 226 和特征向量 v=[278 278 278 279 299 302 324 356 488]。此外,λ 值描述了时间跨度为 226 分钟的 pia 生产计划。关键词:投入产出分析;pia saronde;调度;最大加线性系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信