SWAT-GL: A new glacier routine for the hydrological model SWAT

IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Timo Schaffhauser, Ye Tuo, Florentin Hofmeister, Gabriele Chiogna, Jingshui Huang, Fabian Merk, Markus Disse
{"title":"SWAT-GL: A new glacier routine for the hydrological model SWAT","authors":"Timo Schaffhauser,&nbsp;Ye Tuo,&nbsp;Florentin Hofmeister,&nbsp;Gabriele Chiogna,&nbsp;Jingshui Huang,&nbsp;Fabian Merk,&nbsp;Markus Disse","doi":"10.1111/1752-1688.13199","DOIUrl":null,"url":null,"abstract":"<p>The hydrological model Soil Water Assessment Tool (SWAT) is widely used in water resources management worldwide. It is also used to simulate catchment hydrology in high-mountainous regions where glaciers play an important role. However, SWAT considers glaciers in a simplistic way. Although some efforts were done to overcome this limitation, there is no official version available that considers glaciers adequately. This strongly impairs its applicability in glacierized catchments. In this technical note, we propose a novel version of the traditional SWAT, called SWAT-GL, which introduces (1) a mass balance module and (2) a glacier evolution routine to represent dynamic glacier changes. Mass balance calculations are based on a conceptual degree-day approach, similar to the snow routine implemented in SWAT. Glacier evolution is realized using the delta-<i>h</i> (∆<i>h</i>) parameterization, which requires a minimum of data and is thus suitable in data-scarce regions. The approach allows users to simulate spatially distributed glacier changes. Annual mass balance changes are translated to distributed ice thickness changes depending on the glacier elevation. We demonstrate how SWAT-GL is technically integrated into SWAT and how glaciers are merged with the existing spatial units. Model code and test data are freely accessible to promote further model development efforts and a wide application. Ultimately, SWAT-GL aims to make SWAT easily applicable in glacierized catchments without the need of additional tools.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 3","pages":"755-766"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13199","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13199","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrological model Soil Water Assessment Tool (SWAT) is widely used in water resources management worldwide. It is also used to simulate catchment hydrology in high-mountainous regions where glaciers play an important role. However, SWAT considers glaciers in a simplistic way. Although some efforts were done to overcome this limitation, there is no official version available that considers glaciers adequately. This strongly impairs its applicability in glacierized catchments. In this technical note, we propose a novel version of the traditional SWAT, called SWAT-GL, which introduces (1) a mass balance module and (2) a glacier evolution routine to represent dynamic glacier changes. Mass balance calculations are based on a conceptual degree-day approach, similar to the snow routine implemented in SWAT. Glacier evolution is realized using the delta-h (∆h) parameterization, which requires a minimum of data and is thus suitable in data-scarce regions. The approach allows users to simulate spatially distributed glacier changes. Annual mass balance changes are translated to distributed ice thickness changes depending on the glacier elevation. We demonstrate how SWAT-GL is technically integrated into SWAT and how glaciers are merged with the existing spatial units. Model code and test data are freely accessible to promote further model development efforts and a wide application. Ultimately, SWAT-GL aims to make SWAT easily applicable in glacierized catchments without the need of additional tools.

Abstract Image

SWAT-GL:水文模型 SWAT 的新冰川例程
水文模型 "土壤水评估工具"(SWAT)被广泛应用于世界各地的水资源管理。在冰川发挥重要作用的高山地区,该模型也用于模拟集水区水文情况。然而,SWAT 对冰川的考虑过于简单。虽然为克服这一局限性做出了一些努力,但目前还没有正式版本能充分考虑冰川问题。这严重影响了其在冰川集水区的适用性。在本技术说明中,我们提出了一个传统 SWAT 的新版本,称为 SWAT-GL,其中引入了(1)质量平衡模块和(2)冰川演变程序,以表示冰川的动态变化。质量平衡计算基于概念度日法,类似于 SWAT 中的雪例程。冰川演化使用 delta-h (∆h) 参数化实现,该参数化需要的数据最少,因此适用于数据稀缺的地区。这种方法允许用户模拟空间分布的冰川变化。每年的质量平衡变化会根据冰川海拔高度转化为分布式冰层厚度变化。我们演示了 SWAT-GL 如何在技术上集成到 SWAT 中,以及冰川如何与现有空间单元合并。模型代码和测试数据可免费获取,以促进模型的进一步开发和广泛应用。最终,SWAT-GL 的目标是使 SWAT 能够轻松应用于冰川化流域,而无需额外的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The American Water Resources Association
Journal of The American Water Resources Association 环境科学-地球科学综合
CiteScore
4.10
自引率
12.50%
发文量
100
审稿时长
3 months
期刊介绍: JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy. JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信