Study on Seismic Mechanical Properties of Reinforced Concrete Energy Dissipation Wall and Seismic Response Analysis of Structure

IF 1.5 Q3 MECHANICS
Zhenlong Tong, Zhongya Han, Zenglin Wu, Dongyu Yang
{"title":"Study on Seismic Mechanical Properties of Reinforced Concrete Energy Dissipation Wall and Seismic Response Analysis of Structure","authors":"Zhenlong Tong, Zhongya Han, Zenglin Wu, Dongyu Yang","doi":"10.13052/ejcm2642-2085.3314","DOIUrl":null,"url":null,"abstract":"Utilizing the nonlinear finite element analysis software, ABAQUS, an examination is undertaken to evaluate the ductility characteristics and seismic design methodologies pertinent to a representative reinforced concrete hollow high pier. The research encompasses several focal areas: elucidation of seismic design strategies related to ductility categories, exploration of plastic energy dissipation mechanisms, determination of ductility indices, and delineation of structural measures to enhance ductility. Employing the nonlinear FEA software, ABAQUS, it is recommended that the longitudinal reinforcement ratio for ductile piers fall within the range of 0.6% to 4%. Furthermore, for flexible bridge piers, the maximum spacing of confinement reinforcements should either exceed 100 mm, be sixfold the diameter of the longitudinal reinforcement, or equate to at least one-quarter of the pier column’s bending direction section width. Combined with the influence of high pier ductility seismic axial pressure ratio, reinforcement, concrete factors such as factor analysis results, put forward and checking a reinforced concrete hollow high pier ductility seismic optimization scheme, increase the strength of the plastic hinge area section, through the comparative analysis in different seismic strength of plastic hinge unit cloth, maximum ductility coefficient and pier top displacement to verify its influence on the ductile seismic.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing the nonlinear finite element analysis software, ABAQUS, an examination is undertaken to evaluate the ductility characteristics and seismic design methodologies pertinent to a representative reinforced concrete hollow high pier. The research encompasses several focal areas: elucidation of seismic design strategies related to ductility categories, exploration of plastic energy dissipation mechanisms, determination of ductility indices, and delineation of structural measures to enhance ductility. Employing the nonlinear FEA software, ABAQUS, it is recommended that the longitudinal reinforcement ratio for ductile piers fall within the range of 0.6% to 4%. Furthermore, for flexible bridge piers, the maximum spacing of confinement reinforcements should either exceed 100 mm, be sixfold the diameter of the longitudinal reinforcement, or equate to at least one-quarter of the pier column’s bending direction section width. Combined with the influence of high pier ductility seismic axial pressure ratio, reinforcement, concrete factors such as factor analysis results, put forward and checking a reinforced concrete hollow high pier ductility seismic optimization scheme, increase the strength of the plastic hinge area section, through the comparative analysis in different seismic strength of plastic hinge unit cloth, maximum ductility coefficient and pier top displacement to verify its influence on the ductile seismic.
钢筋混凝土消能墙的抗震力学性能和结构抗震响应分析研究
利用非线性有限元分析软件 ABAQUS,对具有代表性的钢筋混凝土空心高墩的延性特征和抗震设计方法进行了评估。研究包括几个重点领域:阐明与延性类别相关的抗震设计策略、探索塑性能量耗散机制、确定延性指数,以及划定增强延性的结构措施。利用非线性有限元分析软件 ABAQUS,建议延性桥墩的纵向配筋率在 0.6% 至 4% 之间。此外,对于柔性桥墩,约束钢筋的最大间距应超过 100 毫米,或为纵向钢筋直径的六倍,或至少相当于墩柱弯曲方向截面宽度的四分之一。结合影响高墩延性抗震轴压比、钢筋、混凝土等因素分析结果,提出并验算了钢筋混凝土空心高墩延性抗震优化方案,增加塑性铰区截面强度,通过对比分析不同抗震强度下塑性铰单元布、最大延性系数和墩顶位移来验证其对延性抗震的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信