Dalia Sukmawati, A. Firhandini, U. Khumaiya, Dwi Ayu Komsiatun, Syifa Aulia Gunadi, A. Supiyani, Dwi Ningsih Susilowati, Shabrina Nida Al Husna, H. E. El Enshasy, D. Dailin, Catur Sriherwanto
{"title":"Antagonistic Activity of Cellulase-Producing Yeasts Isolated from Cocoa Fermentation Against Pathogenic Molds Collected from Damaged Cocoa Fruits","authors":"Dalia Sukmawati, A. Firhandini, U. Khumaiya, Dwi Ayu Komsiatun, Syifa Aulia Gunadi, A. Supiyani, Dwi Ningsih Susilowati, Shabrina Nida Al Husna, H. E. El Enshasy, D. Dailin, Catur Sriherwanto","doi":"10.18502/kls.v8i1.15401","DOIUrl":null,"url":null,"abstract":"The presence of pathogenic molds in post-harvested cocoa beans poses a significant problem to most Indonesian farmers. Pathogenic molds secrete phytopathogenic toxins which cause rotting, seriously damaging the cocoa fruits. The common pathogenic molds found in damaged cocoa beans are Phytophthora palmivora and Phytophthora megakarya. These molds are so far controlled by using chemical pesticides, whose long-term use is potentially harmful to human health and the environment. Thus, a healthier and safer alternative is needed, especially using biological agents such as yeasts. Some yeasts produce cellulose-degrading enzymes that can possibly break down the fungal cell wall which is composed mostly of the polysaccharide’s chitin and glucan. In this study, yeasts were isolated during the cocoa fermentation process, followed by screening for cellulolytic activity using direct planting and paste method, and subsequent antagonistic testing by double culture technique. Out of 128 yeast isolates, 77 possessed cellulase activity, with 6 of them having the highest activity index. Antagonistic activity test of these 6 isolates (C1.0.4, C1.1.3, C2.3.10, C2.3.14, C3.5.11, and C3.3.1) against the pathogenic molds resulted in isolate C3.3.1 showing the highest inhibition percentage from the 2","PeriodicalId":17898,"journal":{"name":"KnE Life Sciences","volume":"14 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/kls.v8i1.15401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of pathogenic molds in post-harvested cocoa beans poses a significant problem to most Indonesian farmers. Pathogenic molds secrete phytopathogenic toxins which cause rotting, seriously damaging the cocoa fruits. The common pathogenic molds found in damaged cocoa beans are Phytophthora palmivora and Phytophthora megakarya. These molds are so far controlled by using chemical pesticides, whose long-term use is potentially harmful to human health and the environment. Thus, a healthier and safer alternative is needed, especially using biological agents such as yeasts. Some yeasts produce cellulose-degrading enzymes that can possibly break down the fungal cell wall which is composed mostly of the polysaccharide’s chitin and glucan. In this study, yeasts were isolated during the cocoa fermentation process, followed by screening for cellulolytic activity using direct planting and paste method, and subsequent antagonistic testing by double culture technique. Out of 128 yeast isolates, 77 possessed cellulase activity, with 6 of them having the highest activity index. Antagonistic activity test of these 6 isolates (C1.0.4, C1.1.3, C2.3.10, C2.3.14, C3.5.11, and C3.3.1) against the pathogenic molds resulted in isolate C3.3.1 showing the highest inhibition percentage from the 2