Parameter Estimation and Hypothesis Testing of Geographically and Temporally Weighted Bivariate Negative Binomial Regression

Christin Ningrum, Purhadi, Sutikno
{"title":"Parameter Estimation and Hypothesis Testing of Geographically and Temporally Weighted Bivariate Negative Binomial Regression","authors":"Christin Ningrum, Purhadi, Sutikno","doi":"10.18502/kls.v8i1.15547","DOIUrl":null,"url":null,"abstract":"When the response variable is discrete as a number (count) and there is a violation of the assumption of equidispersion, namely overdispersion or underdispersion then one of the appropriate alternative models used is Negative Binomial Regression (NBR). Moreover, if there are two correlated response variables and have an equidispersion violation, the Bivariate Negative Binomial Regression (BNBR) model is the solution. However, the BNBR model is considered inappropriate if the data contains spatial and temporal heterogeneity derived from panel data with the unit of observation in the form of a region. Therefore, a model is offered which is known as Geographically and Temporally Weighted Bivariate Negative Binomial Regression (GTWBNBR) which accommodates spatial and temporal effects. This study aims to conduct parameter estimates and test statistics for the GTWBNBR model. Estimated parameters use Maximum Likelihood Estimation (MLE) with BHHH numerical iteration because the MLE estimates are not closed-form. When the sample size is large, the Maximum Likelihood Ratio Test (MLRT) is used for simultaneous parameter testing while the test statistic for partial parameter testing approaches the Chi-Square distribution so that it can be tested using the Z-Test. \nKeywords: parameter estimation, hypothesis testing, GTWBNBR","PeriodicalId":17898,"journal":{"name":"KnE Life Sciences","volume":"13 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/kls.v8i1.15547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When the response variable is discrete as a number (count) and there is a violation of the assumption of equidispersion, namely overdispersion or underdispersion then one of the appropriate alternative models used is Negative Binomial Regression (NBR). Moreover, if there are two correlated response variables and have an equidispersion violation, the Bivariate Negative Binomial Regression (BNBR) model is the solution. However, the BNBR model is considered inappropriate if the data contains spatial and temporal heterogeneity derived from panel data with the unit of observation in the form of a region. Therefore, a model is offered which is known as Geographically and Temporally Weighted Bivariate Negative Binomial Regression (GTWBNBR) which accommodates spatial and temporal effects. This study aims to conduct parameter estimates and test statistics for the GTWBNBR model. Estimated parameters use Maximum Likelihood Estimation (MLE) with BHHH numerical iteration because the MLE estimates are not closed-form. When the sample size is large, the Maximum Likelihood Ratio Test (MLRT) is used for simultaneous parameter testing while the test statistic for partial parameter testing approaches the Chi-Square distribution so that it can be tested using the Z-Test. Keywords: parameter estimation, hypothesis testing, GTWBNBR
地理和时间加权二元负二项回归的参数估计和假设检验
当反应变量是离散的数字(计数),且存在违反等离散假设的情况,即过度离散或离散不足时,负二项回归(NBR)就是合适的替代模型之一。此外,如果有两个相关的反应变量,且违反了等离散假设,则可采用二元负二叉回归模型(BNBR)。但是,如果数据包含由面板数据产生的空间和时间异质性,且观察单位为区域,则 BNBR 模型被认为是不合适的。因此,我们提出了一个模型,即地理和时间加权二元负二项回归模型(GTWBNBR),该模型考虑了空间和时间效应。本研究旨在对 GTWBNBR 模型进行参数估计和测试统计。参数估计采用最大似然估计(MLE)和 BHHH 数值迭代,因为 MLE 估计不是闭式的。当样本量较大时,使用最大似然比检验(MLRT)进行同步参数检验,而部分参数检验的检验统计量接近于 Chi-Square 分布,因此可以使用 Z 检验进行检验。关键词:参数估计、假设检验、GTWBNBR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信