Yang Ha Cho, María Guadarrama-Sanz, Isabel Molina, A. Eideh, Emily Berg
{"title":"Optimal Predictors of General Small Area Parameters Under an Informative Sample Design Using Parametric Sample Distribution Models","authors":"Yang Ha Cho, María Guadarrama-Sanz, Isabel Molina, A. Eideh, Emily Berg","doi":"10.1093/jssam/smae007","DOIUrl":null,"url":null,"abstract":"\n Two challenges in small area estimation occur when (i) the sample selection mechanism depends on the outcome variable and (ii) the parameter of interest is a nonlinear function of the response variable in the assumed model. If, given the values of the model covariates, the sample selection mechanism depends on the model response variable, the design is said to be informative for the model. Pfeffermann and Sverchkov (2007) develop a small area estimation procedure for informative sampling, focusing on the prediction of small area means. Molina and Rao (2010) develop a small area estimation procedure for general parameters that are nonlinear functions of the model response variable. The method of Molina and Rao assumes noninformative sampling. We combine these two approaches to develop a procedure for the estimation of general parameters in small areas under informative sampling. We introduce a parametric bootstrap MSE estimator that is appropriate for an informative sample design. We evaluate the validity of the proposed procedures through extensive simulation studies and illustrate the procedures utilizing Mexico’s income data.","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smae007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Two challenges in small area estimation occur when (i) the sample selection mechanism depends on the outcome variable and (ii) the parameter of interest is a nonlinear function of the response variable in the assumed model. If, given the values of the model covariates, the sample selection mechanism depends on the model response variable, the design is said to be informative for the model. Pfeffermann and Sverchkov (2007) develop a small area estimation procedure for informative sampling, focusing on the prediction of small area means. Molina and Rao (2010) develop a small area estimation procedure for general parameters that are nonlinear functions of the model response variable. The method of Molina and Rao assumes noninformative sampling. We combine these two approaches to develop a procedure for the estimation of general parameters in small areas under informative sampling. We introduce a parametric bootstrap MSE estimator that is appropriate for an informative sample design. We evaluate the validity of the proposed procedures through extensive simulation studies and illustrate the procedures utilizing Mexico’s income data.
期刊介绍:
The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.