{"title":"Challenges in Reducing Bias Using Post-Processing Fairness for Breast Cancer Stage Classification with Deep Learning","authors":"Armin Soltan, Peter Washington","doi":"10.3390/a17040141","DOIUrl":null,"url":null,"abstract":"Breast cancer is the most common cancer affecting women globally. Despite the significant impact of deep learning models on breast cancer diagnosis and treatment, achieving fairness or equitable outcomes across diverse populations remains a challenge when some demographic groups are underrepresented in the training data. We quantified the bias of models trained to predict breast cancer stage from a dataset consisting of 1000 biopsies from 842 patients provided by AIM-Ahead (Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity). Notably, the majority of data (over 70%) were from White patients. We found that prior to post-processing adjustments, all deep learning models we trained consistently performed better for White patients than for non-White patients. After model calibration, we observed mixed results, with only some models demonstrating improved performance. This work provides a case study of bias in breast cancer medical imaging models and highlights the challenges in using post-processing to attempt to achieve fairness.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"82 20","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17040141","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is the most common cancer affecting women globally. Despite the significant impact of deep learning models on breast cancer diagnosis and treatment, achieving fairness or equitable outcomes across diverse populations remains a challenge when some demographic groups are underrepresented in the training data. We quantified the bias of models trained to predict breast cancer stage from a dataset consisting of 1000 biopsies from 842 patients provided by AIM-Ahead (Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity). Notably, the majority of data (over 70%) were from White patients. We found that prior to post-processing adjustments, all deep learning models we trained consistently performed better for White patients than for non-White patients. After model calibration, we observed mixed results, with only some models demonstrating improved performance. This work provides a case study of bias in breast cancer medical imaging models and highlights the challenges in using post-processing to attempt to achieve fairness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.