Research on Blockchain Transaction Privacy Protection Methods Based on Deep Learning

Future Internet Pub Date : 2024-03-28 DOI:10.3390/fi16040113
Jun Li, Chenyang Zhang, Jianyi Zhang, Yanhua Shao
{"title":"Research on Blockchain Transaction Privacy Protection Methods Based on Deep Learning","authors":"Jun Li, Chenyang Zhang, Jianyi Zhang, Yanhua Shao","doi":"10.3390/fi16040113","DOIUrl":null,"url":null,"abstract":"To address the challenge of balancing privacy protection with regulatory oversight in blockchain transactions, we propose a regulatable privacy protection scheme for blockchain transactions. Our scheme utilizes probabilistic public-key encryption to obscure the true identities of blockchain transaction participants. By integrating commitment schemes and zero-knowledge proof techniques with deep learning graph neural network technology, it provides privacy protection and regulatory analysis of blockchain transaction data. This approach not only prevents the leakage of sensitive transaction information, but also achieves regulatory capabilities at both macro and micro levels, ensuring the verification of the legality of transactions. By adopting an identity-based encryption system, regulatory bodies can conduct personalized supervision of blockchain transactions without storing users’ actual identities and key data, significantly reducing storage computation and key management burdens. Our scheme is independent of any particular consensus mechanism and can be applied to current blockchain technologies. Simulation experiments and complexity analysis demonstrate the practicality of the scheme.","PeriodicalId":509567,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenge of balancing privacy protection with regulatory oversight in blockchain transactions, we propose a regulatable privacy protection scheme for blockchain transactions. Our scheme utilizes probabilistic public-key encryption to obscure the true identities of blockchain transaction participants. By integrating commitment schemes and zero-knowledge proof techniques with deep learning graph neural network technology, it provides privacy protection and regulatory analysis of blockchain transaction data. This approach not only prevents the leakage of sensitive transaction information, but also achieves regulatory capabilities at both macro and micro levels, ensuring the verification of the legality of transactions. By adopting an identity-based encryption system, regulatory bodies can conduct personalized supervision of blockchain transactions without storing users’ actual identities and key data, significantly reducing storage computation and key management burdens. Our scheme is independent of any particular consensus mechanism and can be applied to current blockchain technologies. Simulation experiments and complexity analysis demonstrate the practicality of the scheme.
基于深度学习的区块链交易隐私保护方法研究
为了应对在区块链交易中平衡隐私保护与监管的挑战,我们提出了一种可监管的区块链交易隐私保护方案。我们的方案利用概率公钥加密来掩盖区块链交易参与者的真实身份。通过将承诺方案和零知识证明技术与深度学习图神经网络技术相结合,它可以对区块链交易数据进行隐私保护和监管分析。这种方法不仅能防止敏感交易信息泄露,还能实现宏观和微观层面的监管能力,确保交易的合法性验证。通过采用基于身份的加密系统,监管机构可以对区块链交易进行个性化监管,而无需存储用户的实际身份和密钥数据,大大减轻了存储计算和密钥管理的负担。我们的方案独立于任何特定的共识机制,可应用于当前的区块链技术。仿真实验和复杂性分析证明了该方案的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信