Formation of one-dimensionally self-aligned Si-QDs and their local electron discharging properties

Y. Imai, K. Makihara, Yuji Yamamoto, Wei-Chen Wen, M. Schubert, Jongeun Baek, Ryoya Tsuji, Noriyuki Taoka, A. Ohta, Seiichi Miyazaki
{"title":"Formation of one-dimensionally self-aligned Si-QDs and their local electron discharging properties","authors":"Y. Imai, K. Makihara, Yuji Yamamoto, Wei-Chen Wen, M. Schubert, Jongeun Baek, Ryoya Tsuji, Noriyuki Taoka, A. Ohta, Seiichi Miyazaki","doi":"10.35848/1347-4065/ad38f7","DOIUrl":null,"url":null,"abstract":"\n Self-aligned Si-quantum-dots (Si-QDs) with an areal density as high as ~1011 cm-2 have been fabricated on ultrathin SiO2 by using a ~4.5 nm-thick poly-Si on insulator (SOI) substrate, and controlling low-pressure chemical-vapor-deposition (LPCVD) using monosilane (SiH4), and followed by thermal oxidation. By controlling the thermal oxidation processes of Si-QDs and the poly-Si layer, we have successfully demonstrated the vertical alignment of Si-QDs, where the Si-QDs are also used as a shadow mask of the underlying poly-Si layer. We also demonstrated in-plane alignment of the one-dimensionally self-aligned Si-QDs on line-patterned SiO2. In addition, from surface potential measurements by using atomic force microscopy (AFM)/Kelvin probe force microscopy (KFM), we confirmed that the initial surface potential change caused by valence electron extraction from the dots to the tip was stably maintained until ~120 min, implying the quantum confinement effect at discrete energy levels of the upper- and lower- QDs.","PeriodicalId":505044,"journal":{"name":"Japanese Journal of Applied Physics","volume":"140 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad38f7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-aligned Si-quantum-dots (Si-QDs) with an areal density as high as ~1011 cm-2 have been fabricated on ultrathin SiO2 by using a ~4.5 nm-thick poly-Si on insulator (SOI) substrate, and controlling low-pressure chemical-vapor-deposition (LPCVD) using monosilane (SiH4), and followed by thermal oxidation. By controlling the thermal oxidation processes of Si-QDs and the poly-Si layer, we have successfully demonstrated the vertical alignment of Si-QDs, where the Si-QDs are also used as a shadow mask of the underlying poly-Si layer. We also demonstrated in-plane alignment of the one-dimensionally self-aligned Si-QDs on line-patterned SiO2. In addition, from surface potential measurements by using atomic force microscopy (AFM)/Kelvin probe force microscopy (KFM), we confirmed that the initial surface potential change caused by valence electron extraction from the dots to the tip was stably maintained until ~120 min, implying the quantum confinement effect at discrete energy levels of the upper- and lower- QDs.
一维自排列 Si-QD 的形成及其局部电子放电特性
通过使用约 4.5 nm 厚的绝缘体上聚硅氧烷(SOI)衬底,并使用单硅烷(SiH4)控制低压化学气相沉积(LPCVD),然后进行热氧化,我们在超薄二氧化硅(SiO2)上制备出了自配准的 Si-QDs (Si-QDs),其磁场密度高达约 1011 cm-2。通过控制 Si-QDs 和多晶硅层的热氧化过程,我们成功地演示了 Si-QDs 的垂直排列,其中 Si-QDs 还被用作底层多晶硅层的阴影掩膜。我们还证明了一维自对准 Si-QD 在线型二氧化硅上的平面内对准。此外,通过原子力显微镜(AFM)/开尔文探针力显微镜(KFM)对表面电势的测量,我们证实了价电子从点到尖端的萃取所引起的初始表面电势变化一直稳定地维持到 ~120 分钟,这意味着量子禁锢效应存在于上层和下层 QDs 的离散能级上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信