Abdul Kareem Musthafa, Arockia Julias Arulraj, S. Rajamanickam, Mohanraj Manoharan, Sivakumar Sattanathan, Jeyakumar P.D.
{"title":"Biodegradability and mechanical behavior of novel hybrid green composites fabricated with cashew shell particle, sisal fiber and corn starch resin","authors":"Abdul Kareem Musthafa, Arockia Julias Arulraj, S. Rajamanickam, Mohanraj Manoharan, Sivakumar Sattanathan, Jeyakumar P.D.","doi":"10.1515/polyeng-2023-0219","DOIUrl":null,"url":null,"abstract":"\n Increased use of synthetic non-biodegradable polymeric matrices for composite manufacturing, poses a serious threat to the environment. This necessitates the development of 100 % biodegradable green composites using natural plant-based fibers and biodegradable natural polymers. This study focuses on the biodegradability and mechanical characteristics of biodegradable green hybrid composites fabricated with particles of agricultural waste cashew shell, sisal fibers, and corn starch resin using hand layup followed by compression molding. Mechanical characteristics such as tensile, flexural, impact strength, shore D hardness, and soil burial biodegradation characteristics were studied experimentally. The microstructures of the fractured surfaces were also analyzed through SEM images. Composite sample fabricated with an optimum cashew shell particle proportion of 10 wt %, three sisal fiber mat layers and corn starch resin has recorded the highest mechanical strengths such as 11.4 MPa, 10.9 MPa and 310.15 J/m in tensile, flexural and impact strengths respectively. Thus, the green hybrid composite made with agricultural waste cashew shell particles, sisal fibers, and corn starch resin is a potential and eco-friendly modern material for light load and short-life applications.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Increased use of synthetic non-biodegradable polymeric matrices for composite manufacturing, poses a serious threat to the environment. This necessitates the development of 100 % biodegradable green composites using natural plant-based fibers and biodegradable natural polymers. This study focuses on the biodegradability and mechanical characteristics of biodegradable green hybrid composites fabricated with particles of agricultural waste cashew shell, sisal fibers, and corn starch resin using hand layup followed by compression molding. Mechanical characteristics such as tensile, flexural, impact strength, shore D hardness, and soil burial biodegradation characteristics were studied experimentally. The microstructures of the fractured surfaces were also analyzed through SEM images. Composite sample fabricated with an optimum cashew shell particle proportion of 10 wt %, three sisal fiber mat layers and corn starch resin has recorded the highest mechanical strengths such as 11.4 MPa, 10.9 MPa and 310.15 J/m in tensile, flexural and impact strengths respectively. Thus, the green hybrid composite made with agricultural waste cashew shell particles, sisal fibers, and corn starch resin is a potential and eco-friendly modern material for light load and short-life applications.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.