{"title":"Deep learning assisted fabrication of metallic components using the robotic wire arc additive manufacturing","authors":"Pingyang Zheng, Shaohua Han, Dingqi Xue, Ling Fu, Bifeng Jiang","doi":"10.1108/rpj-04-2023-0133","DOIUrl":null,"url":null,"abstract":"\nPurpose\nBecause of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM) technology has been widely applied for fabricating medium- to large-scale metallic components. The additive manufacturing (AM) method is a relatively complex process, which involves the workpiece modeling, conversion of the model file, slicing, path planning and so on. Then the structure is formed by the accumulated weld bead. However, the poor forming accuracy of WAAM usually leads to severe dimensional deviation between the as-built and the predesigned structures. This paper aims to propose a visual sensing technology and deep learning–assisted WAAM method for fabricating metallic structure, to simplify the complex WAAM process and improve the forming accuracy.\n\n\nDesign/methodology/approach\nInstead of slicing of the workpiece modeling and generating all the welding torch paths in advance of the fabricating process, this method is carried out by adding the feature point regression branch into the Yolov5 algorithm, to detect the feature point from the images of the as-built structure. The coordinates of the feature points of each deposition layer can be calculated automatically. Then the welding torch trajectory for the next deposition layer is generated based on the position of feature point.\n\n\nFindings\nThe mean average precision score of modified YOLOv5 detector is 99.5%. Two types of overhanging structures have been fabricated by the proposed method. The center contour error between the actual and theoretical is 0.56 and 0.27 mm in width direction, and 0.43 and 0.23 mm in height direction, respectively.\n\n\nOriginality/value\nThe fabrication of circular overhanging structures without using the complicate slicing strategy, turning table or other extra support verified the possibility of the robotic WAAM system with deep learning technology.\n","PeriodicalId":509442,"journal":{"name":"Rapid Prototyping Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rpj-04-2023-0133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM) technology has been widely applied for fabricating medium- to large-scale metallic components. The additive manufacturing (AM) method is a relatively complex process, which involves the workpiece modeling, conversion of the model file, slicing, path planning and so on. Then the structure is formed by the accumulated weld bead. However, the poor forming accuracy of WAAM usually leads to severe dimensional deviation between the as-built and the predesigned structures. This paper aims to propose a visual sensing technology and deep learning–assisted WAAM method for fabricating metallic structure, to simplify the complex WAAM process and improve the forming accuracy.
Design/methodology/approach
Instead of slicing of the workpiece modeling and generating all the welding torch paths in advance of the fabricating process, this method is carried out by adding the feature point regression branch into the Yolov5 algorithm, to detect the feature point from the images of the as-built structure. The coordinates of the feature points of each deposition layer can be calculated automatically. Then the welding torch trajectory for the next deposition layer is generated based on the position of feature point.
Findings
The mean average precision score of modified YOLOv5 detector is 99.5%. Two types of overhanging structures have been fabricated by the proposed method. The center contour error between the actual and theoretical is 0.56 and 0.27 mm in width direction, and 0.43 and 0.23 mm in height direction, respectively.
Originality/value
The fabrication of circular overhanging structures without using the complicate slicing strategy, turning table or other extra support verified the possibility of the robotic WAAM system with deep learning technology.