Effect of Silicide and α2 Phase on the Creep Behavior of TC25G Alloy at High Temperature

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhuomeng Liu, Shewei Xin, Yongqing Zhao, Bohao Dang
{"title":"Effect of Silicide and α2 Phase on the Creep Behavior of TC25G Alloy at High Temperature","authors":"Zhuomeng Liu,&nbsp;Shewei Xin,&nbsp;Yongqing Zhao,&nbsp;Bohao Dang","doi":"10.1007/s12540-024-01641-9","DOIUrl":null,"url":null,"abstract":"<div><p>TC25G alloy was heat treated at 950 °C/3 h, AC + 580 °C/6 h, AC and the bimodal structure with primary α phase + β transition structure was obtained. The creep properties of the alloy were tested in 550–600 °C/150–250 MPa. The results show that the precipitations of silicide and α<sub>2</sub> phase is accompanied by the creep process. α<sub>2</sub> phase plays a dispersion strengthening role in both the primary and steady-state creep stages. However, in the accelerated creep stage, the mechanism of α<sub>2</sub> phase and dislocation changes from cutting mechanism to bypassing mechanism, and the strengthening effect is weakened. Silicide inhibits grain boundary slip mainly in the primary creep stage, and inhibits dislocation slip in the steady-state and accelerated creep stages. At 550 °C, <i>n</i> = 1.6 and <i>Q</i> = 280–371 kJ/mol (150–250 MPa) indicate that the creep of the alloy is a self-diffusion process, and the creep deformation is mainly controlled by dislocation slip. At 570–600 °C, <i>n</i> = 3.2 indicates that the dislocation climb controls the creep deformation. Meanwhile, compared with <i>Q</i> = 274 kJ/mol at low stress (150 MPa), <i>Q</i> = 365 kJ/mol at the high stress (200–250 MPa) indicates that the second phase precipitation enhancement is enhanced.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 8","pages":"2158 - 2168"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01641-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

TC25G alloy was heat treated at 950 °C/3 h, AC + 580 °C/6 h, AC and the bimodal structure with primary α phase + β transition structure was obtained. The creep properties of the alloy were tested in 550–600 °C/150–250 MPa. The results show that the precipitations of silicide and α2 phase is accompanied by the creep process. α2 phase plays a dispersion strengthening role in both the primary and steady-state creep stages. However, in the accelerated creep stage, the mechanism of α2 phase and dislocation changes from cutting mechanism to bypassing mechanism, and the strengthening effect is weakened. Silicide inhibits grain boundary slip mainly in the primary creep stage, and inhibits dislocation slip in the steady-state and accelerated creep stages. At 550 °C, n = 1.6 and Q = 280–371 kJ/mol (150–250 MPa) indicate that the creep of the alloy is a self-diffusion process, and the creep deformation is mainly controlled by dislocation slip. At 570–600 °C, n = 3.2 indicates that the dislocation climb controls the creep deformation. Meanwhile, compared with Q = 274 kJ/mol at low stress (150 MPa), Q = 365 kJ/mol at the high stress (200–250 MPa) indicates that the second phase precipitation enhancement is enhanced.

Graphical Abstract

Abstract Image

Abstract Image

硅化物和 α2 相对 TC25G 合金高温蠕变行为的影响
TC25G 合金在 950 °C/3 h, AC + 580 °C/6 h, AC 下进行热处理,获得了主α相 + β过渡结构的双峰结构。在 550-600 °C/150-250 MPa 下测试了合金的蠕变性能。结果表明,硅化物和 α2 相的析出伴随着蠕变过程。在初级蠕变和稳态蠕变阶段,α2 相都起到了分散强化的作用。然而,在加速蠕变阶段,α2 相和位错的作用机理由切割机理变为绕射机理,强化作用减弱。硅化物主要在初级蠕变阶段抑制晶界滑移,在稳态和加速蠕变阶段抑制位错滑移。在 550 °C 时,n = 1.6 和 Q = 280-371 kJ/mol (150-250 MPa)表明合金的蠕变是一个自扩散过程,蠕变变形主要由位错滑移控制。在 570-600 °C 时,n = 3.2 表明位错攀升控制着蠕变变形。同时,与低应力(150 兆帕)时的 Q = 274 kJ/mol 相比,高应力(200-250 兆帕)时的 Q = 365 kJ/mol 表明第二相析出增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信