Photosynthetic co-culture system of algae and human umbilical vein endothelial cells: The effect on alleviating hypoxia and hypoxia/reoxygenation injury

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Donghu Lin, Yuanyuan Chen, Xinyu Tao, Xin Che, Shiyu Li, Shiyu Cheng, Shuxin Qu
{"title":"Photosynthetic co-culture system of algae and human umbilical vein endothelial cells: The effect on alleviating hypoxia and hypoxia/reoxygenation injury","authors":"Donghu Lin,&nbsp;Yuanyuan Chen,&nbsp;Xinyu Tao,&nbsp;Xin Che,&nbsp;Shiyu Li,&nbsp;Shiyu Cheng,&nbsp;Shuxin Qu","doi":"10.1049/bsb2.12078","DOIUrl":null,"url":null,"abstract":"<p>It is a developed photosynthetic co-culture system to alleviate the hypoxia and hypoxia/reoxygenation (H/R)-injured human umbilical vein endothelial cells (HUVECs). The algae, <i>Chlorella vulgaris</i>, were encapsulated to slow their growth while not affecting the photosynthetic oxygen-producing capacity by Layer-by-layer (LbL) using gelatin and sodium alginate as the positive and negative charges materials, respectively. Then, the photosynthetic co-culture system of HUVECs and self-oxygenating alginate hydrogel (Algae-gel) was constructed in which the optimal ratios between algae and HUVECs were 5:1 and 20:1 for a 2D or 3D co-cultured manner, respectively. It indicated that the 3D co-cultured manner of HUVECs needed more O<sub>2</sub> by the production of algae than it did in a 2D co-cultured manner. The co-cultured Algae-gel could alleviate hypoxia and the oxidative stress injury of hypoxia and hypoxia/reoxygenation (H/R)-treated HUVECs in the proliferation, intracellular ROS and cellular migratory ability. In addition, the Algae-gel could downregulate the expression of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF) of hypoxia and H/R-injured HUVECs due to the improvement of hypoxia and H/R injury. This photosynthetic co-culture system could offer a promising approach for repairing hypoxia and H/R-injured cells or tissue by providing safe and stable O<sub>2</sub>.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 2","pages":"76-88"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is a developed photosynthetic co-culture system to alleviate the hypoxia and hypoxia/reoxygenation (H/R)-injured human umbilical vein endothelial cells (HUVECs). The algae, Chlorella vulgaris, were encapsulated to slow their growth while not affecting the photosynthetic oxygen-producing capacity by Layer-by-layer (LbL) using gelatin and sodium alginate as the positive and negative charges materials, respectively. Then, the photosynthetic co-culture system of HUVECs and self-oxygenating alginate hydrogel (Algae-gel) was constructed in which the optimal ratios between algae and HUVECs were 5:1 and 20:1 for a 2D or 3D co-cultured manner, respectively. It indicated that the 3D co-cultured manner of HUVECs needed more O2 by the production of algae than it did in a 2D co-cultured manner. The co-cultured Algae-gel could alleviate hypoxia and the oxidative stress injury of hypoxia and hypoxia/reoxygenation (H/R)-treated HUVECs in the proliferation, intracellular ROS and cellular migratory ability. In addition, the Algae-gel could downregulate the expression of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF) of hypoxia and H/R-injured HUVECs due to the improvement of hypoxia and H/R injury. This photosynthetic co-culture system could offer a promising approach for repairing hypoxia and H/R-injured cells or tissue by providing safe and stable O2.

Abstract Image

藻类与人脐静脉内皮细胞的光合共培养系统:缓解缺氧和缺氧/复氧损伤的效果
这是一种新开发的光合共培养系统,用于缓解缺氧和缺氧/复氧(H/R)损伤的人脐静脉内皮细胞(HUVECs)。以明胶和海藻酸钠分别作为正电荷和负电荷材料,通过逐层包裹法(LbL)将藻类小球藻(Chlorella vulgaris)包裹起来,以减缓其生长速度,同时不影响其光合产氧能力。然后,构建了 HUVECs 与自氧海藻酸钠水凝胶(海藻凝胶)的光合共培养系统,在二维或三维共培养方式中,海藻与 HUVECs 的最佳比例分别为 5:1 和 20:1。结果表明,与二维共培养相比,三维共培养 HUVECs 需要更多的氧气来生产藻类。共培养的藻凝胶能减轻缺氧和缺氧/复氧(H/R)处理的HUVECs在增殖、细胞内ROS和细胞迁移能力方面的氧化应激损伤。此外,藻凝胶还能下调缺氧诱导因子 1α (HIF-1α)和血管内皮生长因子(VEGF)在缺氧和 H/R 损伤 HUVEC 中的表达,从而改善缺氧和 H/R 损伤。这种光合共培养系统通过提供安全稳定的氧气,为修复缺氧和 H/R 损伤的细胞或组织提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信