Fernanda Albuquerque dos Reis Veríssimo, Mauricio Mussi Molisani
{"title":"The retention efficiency of a large dam and reservoir eutrophication in a tropical coastal watershed under a rainfall reduction scenario","authors":"Fernanda Albuquerque dos Reis Veríssimo, Mauricio Mussi Molisani","doi":"10.1002/eco.2645","DOIUrl":null,"url":null,"abstract":"<p>Tropical coastal rivers transport significant amounts of materials, and the dam's retention efficiency can affect hydrological processes generating impacts on reservoirs, such as eutrophication. Nevertheless, climate change projects uneven regional rainfall reduction, affecting surface water circulation and consequently the dam retention efficiency with possible effects on reservoir eutrophication. Here, we investigated the water, suspended particulate matter, and nutrient mass-balance budgets in a large reservoir under a lowest rainfall year and effects on reservoir eutrophication in a tropical coastal watershed. Under low rainfall condition, the annual water budget showed that the dam water retention was limited, but the dam retained around 75% of the suspended particulate matter fluxes from the rivers. In terms of nutrients, the dam exported TN, TP and D-Si while retaining PO<sub>4</sub><sup>3−</sup> on average; however, these circumstances fluctuated depending on the sample event. The reservoir's trophic state varied from mesotrophic to eutrophic possible reflecting the reduced dam's nutrient retention efficiency under influence of the low rainfall condition. However, 2 years following our sampling period, supereutrophic conditions and algal bloom were measured. Because human activities account for the majority of N and P loads across the watershed, mainly to soils, this biological response has been attributed to a greater rainfall regime that transfers N and P from soils to the reservoir.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2645","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical coastal rivers transport significant amounts of materials, and the dam's retention efficiency can affect hydrological processes generating impacts on reservoirs, such as eutrophication. Nevertheless, climate change projects uneven regional rainfall reduction, affecting surface water circulation and consequently the dam retention efficiency with possible effects on reservoir eutrophication. Here, we investigated the water, suspended particulate matter, and nutrient mass-balance budgets in a large reservoir under a lowest rainfall year and effects on reservoir eutrophication in a tropical coastal watershed. Under low rainfall condition, the annual water budget showed that the dam water retention was limited, but the dam retained around 75% of the suspended particulate matter fluxes from the rivers. In terms of nutrients, the dam exported TN, TP and D-Si while retaining PO43− on average; however, these circumstances fluctuated depending on the sample event. The reservoir's trophic state varied from mesotrophic to eutrophic possible reflecting the reduced dam's nutrient retention efficiency under influence of the low rainfall condition. However, 2 years following our sampling period, supereutrophic conditions and algal bloom were measured. Because human activities account for the majority of N and P loads across the watershed, mainly to soils, this biological response has been attributed to a greater rainfall regime that transfers N and P from soils to the reservoir.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.