{"title":"WEDM Characteristics of Stir-Cast Al-TiB2 Metal Matrix Composites","authors":"Siraj Ali Khan, Suswagata Poria, Prasanta Sahoo","doi":"10.1007/s13369-024-08885-y","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents an experimental investigation of the WEDM (Wire Electrical Discharge Machining) performance of Al-TiB<sub>2</sub> composites fabricated using ultrasonic vibration-assisted stir casting and containing four different weight percentages (1%, 2.5%, 4%, and 5.5%) of TiB<sub>2</sub> particles. Key machining parameters, namely pulse-on time, wire feed rate, and pulse-off time, are varied at three levels suitable for machining aluminium base material while minimizing wire breakage. Cutting speed, material removal rate, and kerf width are observed individually for each selected level of these process parameters. Surface features are assessed using SEM (Scanning Electron Microscope), EDAX (Energy Dispersive X-ray Spectroscopy), 3D optical surface profilometer, and optical microscopy. Notably, the roughness values are lower in the 4% and 5.5% TiB<sub>2</sub> composites compared to the base matrix. This reduction in roughness is due to the protective role of the particles, which shield the surface from melting during the WEDM process. Melting and re-welding phenomena were observed throughout the machining process. It is observed that higher pulse-on time generates harsh sparks, leading to rougher surfaces that include melted zones and pits. The WEDM operations performed on the 5.5 wt% reinforced composite surface result in a significant reduction in roughness, decreasing from around 5 µm to approximately 2.7 µm.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-08885-y","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an experimental investigation of the WEDM (Wire Electrical Discharge Machining) performance of Al-TiB2 composites fabricated using ultrasonic vibration-assisted stir casting and containing four different weight percentages (1%, 2.5%, 4%, and 5.5%) of TiB2 particles. Key machining parameters, namely pulse-on time, wire feed rate, and pulse-off time, are varied at three levels suitable for machining aluminium base material while minimizing wire breakage. Cutting speed, material removal rate, and kerf width are observed individually for each selected level of these process parameters. Surface features are assessed using SEM (Scanning Electron Microscope), EDAX (Energy Dispersive X-ray Spectroscopy), 3D optical surface profilometer, and optical microscopy. Notably, the roughness values are lower in the 4% and 5.5% TiB2 composites compared to the base matrix. This reduction in roughness is due to the protective role of the particles, which shield the surface from melting during the WEDM process. Melting and re-welding phenomena were observed throughout the machining process. It is observed that higher pulse-on time generates harsh sparks, leading to rougher surfaces that include melted zones and pits. The WEDM operations performed on the 5.5 wt% reinforced composite surface result in a significant reduction in roughness, decreasing from around 5 µm to approximately 2.7 µm.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.