Iva D. Stoykova, Ivanka K. Koycheva, Biser K. Binev, Liliya V. Mihaylova, Milen I. Georgiev
{"title":"Molecular approaches to prevent UV-induced premature skin aging: focus on phytochemicals as photo-protectants","authors":"Iva D. Stoykova, Ivanka K. Koycheva, Biser K. Binev, Liliya V. Mihaylova, Milen I. Georgiev","doi":"10.1007/s11101-024-09952-w","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic exposure to ultraviolet radiation (UVR) leads to premature aging of the skin, with external manifestations of unsightly scars and internal molecular dysregulations that significantly reduce the protective function of the skin and increase the risk of cancer development. Photoprotection through daily application of sunscreen product is widely recommended to avoid UV-induced skin photodamage and to minimaze the risk for dermal malignancies. However, the environmental hazard that is a consequence of the use of traditional sunscreen products drives the increased interest in the investigation of alternative UVR blockers. Due to their structural diversity, modulation of multiple molecular mechanisms, and favorable safety profile, natural plant-derived compounds have become attractive candidates for skin photoaging prevention. This review summarizes the critical aspects of skin photoaging, from its pathological characteristics and current photoprotective options to the specific molecular players that emerge as therapeutic targets. Special emphasis has been placed on phytochemicals targeting the molecular hallmarks of UV-induced skin aging. The potential of plant molecules to control oxidative stress, inflammation, photo-senescence, DNA damage, extracellular matrix components degradation, and to manage different types of UV-trigerred cell death has been highlighted. Summarizing the molecular signalling pathways responsible for the photoprotective action of plant-derived molecules may provide meaningful outlook for development of new effective therapeutics options for prevention of skin photoaging.</p></div>","PeriodicalId":733,"journal":{"name":"Phytochemistry Reviews","volume":"24 1","pages":"119 - 150"},"PeriodicalIF":7.3000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Reviews","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11101-024-09952-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic exposure to ultraviolet radiation (UVR) leads to premature aging of the skin, with external manifestations of unsightly scars and internal molecular dysregulations that significantly reduce the protective function of the skin and increase the risk of cancer development. Photoprotection through daily application of sunscreen product is widely recommended to avoid UV-induced skin photodamage and to minimaze the risk for dermal malignancies. However, the environmental hazard that is a consequence of the use of traditional sunscreen products drives the increased interest in the investigation of alternative UVR blockers. Due to their structural diversity, modulation of multiple molecular mechanisms, and favorable safety profile, natural plant-derived compounds have become attractive candidates for skin photoaging prevention. This review summarizes the critical aspects of skin photoaging, from its pathological characteristics and current photoprotective options to the specific molecular players that emerge as therapeutic targets. Special emphasis has been placed on phytochemicals targeting the molecular hallmarks of UV-induced skin aging. The potential of plant molecules to control oxidative stress, inflammation, photo-senescence, DNA damage, extracellular matrix components degradation, and to manage different types of UV-trigerred cell death has been highlighted. Summarizing the molecular signalling pathways responsible for the photoprotective action of plant-derived molecules may provide meaningful outlook for development of new effective therapeutics options for prevention of skin photoaging.
期刊介绍:
Phytochemistry Reviews is the sole review journal encompassing all facets of phytochemistry. It publishes peer-reviewed papers in six issues annually, including topical issues often stemming from meetings organized by the Phytochemical Society of Europe. Additionally, the journal welcomes original review papers that contribute to advancing knowledge in various aspects of plant chemistry, function, biosynthesis, effects on plant and animal physiology, pathology, and their application in agriculture and industry. Invited meeting papers are supplemented with additional review papers, providing a comprehensive overview of the current status across all areas of phytochemistry.