A. H. Abdullah, I. Tharazi, F. M. Salleh, N. H. A. Halim, Z. H. Solihin, Afeeqa Puteri Marzuki, K. Abdan
{"title":"Tensile properties and dynamic mechanical analysis of kenaf/epoxy composites","authors":"A. H. Abdullah, I. Tharazi, F. M. Salleh, N. H. A. Halim, Z. H. Solihin, Afeeqa Puteri Marzuki, K. Abdan","doi":"10.15282/jmes.18.1.2024.3.0778","DOIUrl":null,"url":null,"abstract":"Kenaf fibre-reinforced polymer composites could offer low-cost, biodegradable, recyclable, and renewable materials. The hydrophilic kenaf fibres exhibit poor compatibility with the hydrophobic epoxy matrix as compared to their synthetic counterparts and ultimately, this may severely constrain their potential as a green composite material. This work aims to evaluate the tensile properties and dynamic mechanical analysis (DMA) of kenaf fibre composites reinforced with two epoxy systems as matrices, B and M resins. Neat epoxy samples and kenaf-reinforced composites with varying fibre loading, 15% and 45% were fabricated in the study. It was found that the tensile properties of kenaf composites are dependent on the epoxy resin systems and higher with reinforcement content. The tensile strength of M-15% and M-45% are 16.3% and 12.0% stronger than their counterparts. Determination of interfacial shear strength using a modified micromechanical model was employed showing that M-45 has a higher value than B-45%, 107.09 kPa and 90.28 kPa respectively. By DMA, in general, an increase in the storage modulus and peak height in the loss modulus was always higher with kenaf composites that were manufactured with the M resin system. The adhesion factor, A calculated from tan delta curves and cole-cole plot has shown the state of fibre/matrix adhesion level in each epoxy resin system. The SEM analysis indicates the presence of void spaces around fibres and matrix may attributed to the lower compatibility of the B resins system used in kenaf composites fabrication.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.18.1.2024.3.0778","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Kenaf fibre-reinforced polymer composites could offer low-cost, biodegradable, recyclable, and renewable materials. The hydrophilic kenaf fibres exhibit poor compatibility with the hydrophobic epoxy matrix as compared to their synthetic counterparts and ultimately, this may severely constrain their potential as a green composite material. This work aims to evaluate the tensile properties and dynamic mechanical analysis (DMA) of kenaf fibre composites reinforced with two epoxy systems as matrices, B and M resins. Neat epoxy samples and kenaf-reinforced composites with varying fibre loading, 15% and 45% were fabricated in the study. It was found that the tensile properties of kenaf composites are dependent on the epoxy resin systems and higher with reinforcement content. The tensile strength of M-15% and M-45% are 16.3% and 12.0% stronger than their counterparts. Determination of interfacial shear strength using a modified micromechanical model was employed showing that M-45 has a higher value than B-45%, 107.09 kPa and 90.28 kPa respectively. By DMA, in general, an increase in the storage modulus and peak height in the loss modulus was always higher with kenaf composites that were manufactured with the M resin system. The adhesion factor, A calculated from tan delta curves and cole-cole plot has shown the state of fibre/matrix adhesion level in each epoxy resin system. The SEM analysis indicates the presence of void spaces around fibres and matrix may attributed to the lower compatibility of the B resins system used in kenaf composites fabrication.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.