Ni@C/PPy Composites Derived from Ni-MOF Materials for Efficient Microwave Absorption

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Yu Ma, Yupeng Zou, Lingsai Meng, Lijuan Cai, Shengxiang Xiong, Gang Chen, C. Dong, H. Guan
{"title":"Ni@C/PPy Composites Derived from Ni-MOF Materials for Efficient Microwave Absorption","authors":"Yu Ma, Yupeng Zou, Lingsai Meng, Lijuan Cai, Shengxiang Xiong, Gang Chen, C. Dong, H. Guan","doi":"10.3390/magnetochemistry10040024","DOIUrl":null,"url":null,"abstract":"Ni-MOF, as a metal–organic framework, has the advantages of morphological diversity and adjustable composition, which make its derivatives attractive for electromagnetic wave absorption. However, it is challenging for Ni-MOF derivatives to obtain strong absorption at low filling rates. Herein, ternary Ni@C/PPy composites based on Ni-MOF derivatives were synthesized by cooperatively coupling magnetic Ni@C nanoparticles with a conductive polymer PPy matrix through a facile self-assembly method. Among them, Ni@C nanoparticles are formed after Ni-MOF pyrolysis, and PPy serves as the backbone to effectively assemble and support the Ni@C nanoparticles. As a result, the Ni@C/PPy-3 sample exhibited excellent performance with a reflection loss value of −50.65 dB at a filling ratio of 15 wt% and a thickness of 2.5 mm. At the same time, its effective absorption bandwidth reached 6.24 GHz, covering the whole Ku frequency band. The results show that in comparison to pure Ni@C composite, the Ni@C/PPy multi-component composite with a porous structure shows significant advantages in terms of optimizing impedance matching, which can effectively enhance the interface polarization and, thus, greatly improve its electromagnetic absorption ability. In summary, this work provides a valuable research idea for developing strong absorbing properties of absorbing materials at a low filling rate.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10040024","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Ni-MOF, as a metal–organic framework, has the advantages of morphological diversity and adjustable composition, which make its derivatives attractive for electromagnetic wave absorption. However, it is challenging for Ni-MOF derivatives to obtain strong absorption at low filling rates. Herein, ternary Ni@C/PPy composites based on Ni-MOF derivatives were synthesized by cooperatively coupling magnetic Ni@C nanoparticles with a conductive polymer PPy matrix through a facile self-assembly method. Among them, Ni@C nanoparticles are formed after Ni-MOF pyrolysis, and PPy serves as the backbone to effectively assemble and support the Ni@C nanoparticles. As a result, the Ni@C/PPy-3 sample exhibited excellent performance with a reflection loss value of −50.65 dB at a filling ratio of 15 wt% and a thickness of 2.5 mm. At the same time, its effective absorption bandwidth reached 6.24 GHz, covering the whole Ku frequency band. The results show that in comparison to pure Ni@C composite, the Ni@C/PPy multi-component composite with a porous structure shows significant advantages in terms of optimizing impedance matching, which can effectively enhance the interface polarization and, thus, greatly improve its electromagnetic absorption ability. In summary, this work provides a valuable research idea for developing strong absorbing properties of absorbing materials at a low filling rate.
用于高效微波吸收的 Ni-MOF 材料衍生的 Ni@C/PPy 复合材料
作为一种金属有机框架,Ni-MOF 具有形态多样性和成分可调的优点,这使其衍生物在电磁波吸收方面具有吸引力。然而,Ni-MOF 衍生物要在低填充率条件下获得强吸收性是一项挑战。本文通过简便的自组装方法,将磁性Ni@C纳米粒子与导电聚合物PPy基体协同偶联,合成了基于Ni-MOF衍生物的Ni@C/PPy三元复合材料。其中,Ni-MOF热解后形成Ni@C纳米颗粒,PPy作为骨架有效地组装和支撑Ni@C纳米颗粒。因此,Ni@C/PPy-3 样品表现出优异的性能,在填充率为 15 wt%、厚度为 2.5 mm 时,反射损耗值为 -50.65 dB。同时,其有效吸收带宽达到 6.24 GHz,覆盖了整个 Ku 频段。结果表明,与纯 Ni@C 复合材料相比,具有多孔结构的 Ni@C/PPy 多组分复合材料在优化阻抗匹配方面具有显著优势,可有效增强界面极化,从而大大提高其电磁吸收能力。总之,这项工作为在低填充率下开发吸波材料的强吸波特性提供了有价值的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信