Automatic detection and classification of disease in citrus fruit and leaves using a customized CNN based model

IF 0.7 4区 医学 Q4 INTEGRATIVE & COMPLEMENTARY MEDICINE
Josephin Shermila P, Akila Victor, S. O. Manoj, E. A. Devi
{"title":"Automatic detection and classification of disease in citrus fruit and leaves using a customized CNN based model","authors":"Josephin Shermila P, Akila Victor, S. O. Manoj, E. A. Devi","doi":"10.37360/blacpma.24.23.2.13","DOIUrl":null,"url":null,"abstract":"India's commercial advancement and development depend heavily on agriculture. A common fruit grown in tropical settings is citrus. A professional judgment is required while analyzing an illness because different diseases have slight variations in their symptoms. In order to recognize and classify diseases in citrus fruits and leaves, a customized CNN-based approach that links CNN with LSTM was developed in this research. By using a CNN-based method, it is possible to automatically differentiate from healthier fruits and leaves and those that have diseases such fruit blight, fruit greening, fruit scab, and melanoses. In terms of performance, the proposed approach achieves 96% accuracy, 98% sensitivity, 96% Recall, and an F1-score of 92% for citrus fruit and leave identification and classification and the proposed method was compared with KNN, SVM, and CNN and concluded that the proposed CNN-based model is more accurate and effective at identifying illnesses in citrus fruits and leaves","PeriodicalId":55342,"journal":{"name":"Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.37360/blacpma.24.23.2.13","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 1

Abstract

India's commercial advancement and development depend heavily on agriculture. A common fruit grown in tropical settings is citrus. A professional judgment is required while analyzing an illness because different diseases have slight variations in their symptoms. In order to recognize and classify diseases in citrus fruits and leaves, a customized CNN-based approach that links CNN with LSTM was developed in this research. By using a CNN-based method, it is possible to automatically differentiate from healthier fruits and leaves and those that have diseases such fruit blight, fruit greening, fruit scab, and melanoses. In terms of performance, the proposed approach achieves 96% accuracy, 98% sensitivity, 96% Recall, and an F1-score of 92% for citrus fruit and leave identification and classification and the proposed method was compared with KNN, SVM, and CNN and concluded that the proposed CNN-based model is more accurate and effective at identifying illnesses in citrus fruits and leaves
使用基于 CNN 的定制模型自动检测柑橘果实和叶片的病害并进行分类
印度的商业进步和发展在很大程度上依赖于农业。热带地区常见的水果是柑橘。由于不同疾病的症状略有不同,因此在分析疾病时需要专业判断。为了识别柑橘果实和叶子的疾病并进行分类,本研究开发了一种基于 CNN 的定制方法,将 CNN 与 LSTM 相结合。通过使用基于 CNN 的方法,可以自动区分较健康的果实和叶片,以及患有果实枯萎病、果实变绿、果实疮痂病和黑色素瘤等疾病的果实和叶片。在性能方面,所提出的方法在柑橘果叶识别和分类方面达到了 96% 的准确率、98% 的灵敏度、96% 的召回率和 92% 的 F1 分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas (BLACPMA), [Latin American and Caribbean Bulletin of Medicinal and Aromatic Plants]; currently edited by the publishing house MS-Editions, is a bi-monthly international publication that publishes original peerreviewed research in the field of medicinal and aromatic plants, with nearly 20 years of experience. BLACPMA is a scientific journal that publishes two types of articles: Reviews (only in English) and Original Articles (Spanish or English), its main lines of action being agronomy, anthropology and ethnobotany, industrial applications, botany, quality and standardization, ecology and biodiversity, pharmacology, phytochemistry, pharmacognosy, regulatory and legislative aspects. While all areas of medicinal plants are welcome and the experimental approaches used can be broad and interdisciplinary; other areas of research that are not mentioned depend on the Editorial Committee for their acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信