A Novel Hybrid Unet-RBF and CNN-RBF Algorithm for Autism Spectrum Disorder Classification

Lim Huey Chern, Abdulrazak Yahya Saleh Al-Hababi
{"title":"A Novel Hybrid Unet-RBF and CNN-RBF Algorithm for Autism Spectrum Disorder Classification","authors":"Lim Huey Chern, Abdulrazak Yahya Saleh Al-Hababi","doi":"10.33736/jcshd.6778.2024","DOIUrl":null,"url":null,"abstract":"The 2021 CDC report indicates that Autism Spectrum Disorder affects 1 in 44 children, necessitating advanced classification methods. This article proposes a hybrid deep learning approach for ASD classification, merging U-net and Radial Basis Functions for medical image segmentation and integrating Convolutional Neural Network with RBF for ASD classification. Achieving 94.79% accuracy surpasses previous studies, highlighting deep learning's potential in neuroscience. Future research should explore diverse algorithms, validating them across varied datasets with different hyperparameters to enhance ASD classification efficiency.","PeriodicalId":170307,"journal":{"name":"Journal of Cognitive Sciences and Human Development","volume":"31 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Sciences and Human Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33736/jcshd.6778.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 2021 CDC report indicates that Autism Spectrum Disorder affects 1 in 44 children, necessitating advanced classification methods. This article proposes a hybrid deep learning approach for ASD classification, merging U-net and Radial Basis Functions for medical image segmentation and integrating Convolutional Neural Network with RBF for ASD classification. Achieving 94.79% accuracy surpasses previous studies, highlighting deep learning's potential in neuroscience. Future research should explore diverse algorithms, validating them across varied datasets with different hyperparameters to enhance ASD classification efficiency.
用于自闭症谱系障碍分类的新型 Unet-RBF 和 CNN-RBF 混合算法
2021 年美国疾病预防控制中心的报告指出,每 44 名儿童中就有 1 名患有自闭症谱系障碍,因此需要采用先进的分类方法。本文提出了一种用于 ASD 分类的混合深度学习方法,将 U-net 和径向基函数合并用于医学图像分割,并将卷积神经网络与 RBF 集成用于 ASD 分类。其准确率达到 94.79%,超过了以往的研究,凸显了深度学习在神经科学领域的潜力。未来的研究应探索多种算法,在不同超参数的数据集上进行验证,以提高 ASD 分类效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信