Room-Temperature Entanglement of the Nickel-Radical Molecular Complex (Et3NH)[Ni(hfac)2L] Reinforced by the Magnetic Field

Jozef Strečka, Elham Shahhosseini Shahrabadi
{"title":"Room-Temperature Entanglement of the Nickel-Radical Molecular Complex (Et3NH)[Ni(hfac)2L] Reinforced by the Magnetic Field","authors":"Jozef Strečka, Elham Shahhosseini Shahrabadi","doi":"10.3390/inorganics12040102","DOIUrl":null,"url":null,"abstract":"Bipartite entanglement is comprehensively investigated in the mononuclear molecular complex (Et3NH)[Ni(hfac)2L], where HL denotes 2-(2-hydroxy-3-methoxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl and hfacH stands for hexafluoroacetylacetone. From the magnetic point of view, the molecular compound (Et3NH)[Ni(hfac)2L] consists of an exchange-coupled spin-1 Ni2+ magnetic ion and a spin-12 nitronyl-nitroxide radical substituted nitrophenol. The nickel-radical molecular complex affords an experimental realization of a mixed spin-(12, 1) Heisenberg dimer with a strong antiferromagnetic exchange coupling, J/kB = 505 K, and two distinct g-factors, gRad = 2.005 and gNi = 2.275. By adopting this set of magnetic parameters, we demonstrate that the Zeeman splitting of a quantum ferrimagnetic ground-state doublet due to a weak magnetic field may substantially reinforce the strength of bipartite entanglement at low temperatures. The molecular compound (Et3NH)[Ni(hfac)2L] maintains sufficiently strong thermal entanglement, even at room temperature, vanishing only above 546 K. Specifically, the thermal entanglement in the nickel-radical molecular complex retains approximately 40% of the maximum value, corresponding to perfectly entangled Bell states at room temperature, which implies that this magnetic compound provides a suitable platform of a molecular qubit with potential implications for room-temperature quantum computation and quantum information processing.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics12040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bipartite entanglement is comprehensively investigated in the mononuclear molecular complex (Et3NH)[Ni(hfac)2L], where HL denotes 2-(2-hydroxy-3-methoxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl and hfacH stands for hexafluoroacetylacetone. From the magnetic point of view, the molecular compound (Et3NH)[Ni(hfac)2L] consists of an exchange-coupled spin-1 Ni2+ magnetic ion and a spin-12 nitronyl-nitroxide radical substituted nitrophenol. The nickel-radical molecular complex affords an experimental realization of a mixed spin-(12, 1) Heisenberg dimer with a strong antiferromagnetic exchange coupling, J/kB = 505 K, and two distinct g-factors, gRad = 2.005 and gNi = 2.275. By adopting this set of magnetic parameters, we demonstrate that the Zeeman splitting of a quantum ferrimagnetic ground-state doublet due to a weak magnetic field may substantially reinforce the strength of bipartite entanglement at low temperatures. The molecular compound (Et3NH)[Ni(hfac)2L] maintains sufficiently strong thermal entanglement, even at room temperature, vanishing only above 546 K. Specifically, the thermal entanglement in the nickel-radical molecular complex retains approximately 40% of the maximum value, corresponding to perfectly entangled Bell states at room temperature, which implies that this magnetic compound provides a suitable platform of a molecular qubit with potential implications for room-temperature quantum computation and quantum information processing.
磁场强化的镍-放射性分子复合物 (Et3NH)[Ni(hfac)2L] 的室温纠缠特性
我们全面研究了单核分子化合物 (Et3NH)[Ni(hfac)2L] 中的双向纠缠,其中 HL 表示 2-(2-羟基-3-甲氧基-5-硝基苯基)-4,4,5,5-四甲基-4,5-二氢-1H-咪唑-3-氧化物-1-氧乙基,hfacH 表示六氟乙酰丙酮。从磁性角度来看,(Et3NH)[Ni(hfac)2L] 分子化合物由交换耦合的自旋 1 Ni2+ 磁性离子和自旋 12 硝基取代的硝基苯酚组成。镍-自由基分子复合物通过实验实现了混合自旋-(12,1)海森堡二聚体,具有强反铁磁交换耦合(J/kB = 505 K)和两个不同的 g 因子(gRad = 2.005 和 gNi = 2.275)。通过采用这组磁参数,我们证明了弱磁场导致的量子铁磁基态双态的泽曼分裂可能会在低温下大大加强双态纠缠的强度。分子化合物 (Et3NH)[Ni(hfac)2L] 即使在室温下也能保持足够强的热纠缠,只有在 546 K 以上才会消失。具体来说,镍-放射性分子复合物中的热纠缠保持了最大值的约 40%,相当于室温下完全纠缠的贝尔态,这意味着这种磁性化合物提供了一个合适的分子量子比特平台,对室温量子计算和量子信息处理具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信