On the Coincidence Theorem

R. Bakić
{"title":"On the Coincidence Theorem","authors":"R. Bakić","doi":"10.7546/crabs.2024.03.01","DOIUrl":null,"url":null,"abstract":"We are proving Coincidence theorem due to Walsh for the case when the total degree of a polynomial is less than the number of arguments. Also, the following result has been proven: if $$p(z)$$ is a complex polynomial of degree $$n$$, then closed disk D that contains at least $$n-1$$ of its zeros (counting multiplicity) contains at least $$\\left[\\frac{n-2k+1}{2} \\right]$$ zeros  of its $$k$$-th derivative, provided that the arithmetical mean of these zeros is also centre of D. We also prove a variation of the classical composition theorem due to Szegö.","PeriodicalId":104760,"journal":{"name":"Proceedings of the Bulgarian Academy of Sciences","volume":"30 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Bulgarian Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/crabs.2024.03.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are proving Coincidence theorem due to Walsh for the case when the total degree of a polynomial is less than the number of arguments. Also, the following result has been proven: if $$p(z)$$ is a complex polynomial of degree $$n$$, then closed disk D that contains at least $$n-1$$ of its zeros (counting multiplicity) contains at least $$\left[\frac{n-2k+1}{2} \right]$$ zeros  of its $$k$$-th derivative, provided that the arithmetical mean of these zeros is also centre of D. We also prove a variation of the classical composition theorem due to Szegö.
关于巧合定理
我们正在证明沃尔什提出的多项式总度数小于参数数时的巧合定理。此外,我们还证明了以下结果:如果 $$p(z)$$ 是一个度数为 $$n$$ 的复多项式,那么包含至少 $$n-1$ 其零点(计算多重性)的闭磁盘 D 至少包含 $$left[\frac{n-2k+1}{2}\right]$$ 其 $$k$$ 次导数的零点,条件是这些零点的算术平均数也是 D 的中心。我们还证明了由 Szegö 提出的经典组成定理的变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信