A framework to select tuning parameters for nonparametric derivative estimation

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Sisheng Liu, Xiaoli Kong
{"title":"A framework to select tuning parameters for nonparametric derivative estimation","authors":"Sisheng Liu,&nbsp;Xiaoli Kong","doi":"10.1002/bimj.202300039","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a general framework to select tuning parameters for the nonparametric derivative estimation. The new framework broadens the scope of the previously proposed generalized <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mi>p</mi>\n </msub>\n <annotation>$C_p$</annotation>\n </semantics></math> criterion by replacing the empirical derivative with any other linear nonparametric smoother. We provide the theoretical support of the proposed derivative estimation in a random design and justify it through simulation studies. The practical application of the proposed framework is demonstrated in the study of the age effect on hippocampal gray matter volume in healthy adults from the IXI dataset and the study of the effect of age and body mass index on blood pressure from the Pima Indians dataset.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a general framework to select tuning parameters for the nonparametric derivative estimation. The new framework broadens the scope of the previously proposed generalized C p $C_p$ criterion by replacing the empirical derivative with any other linear nonparametric smoother. We provide the theoretical support of the proposed derivative estimation in a random design and justify it through simulation studies. The practical application of the proposed framework is demonstrated in the study of the age effect on hippocampal gray matter volume in healthy adults from the IXI dataset and the study of the effect of age and body mass index on blood pressure from the Pima Indians dataset.

为非参数导数估计选择调整参数的框架
在本文中,我们提出了一个为非参数导数估计选择调整参数的通用框架。新框架扩大了之前提出的广义 C p $C_p$ 准则的范围,用任何其他线性非参数平滑器取代了经验导数。我们为随机设计中的导数估计提供了理论支持,并通过模拟研究证明了这一点。在研究 IXI 数据集对健康成年人海马灰质体积的年龄影响以及研究皮马印第安人数据集的年龄和体重指数对血压的影响时,证明了所提出框架的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信