Boyuan Yin;Xianwu Zeng;John Frederick Eastham;Emelie Nilsson;Jean-francois Rouquette;Jean Rivenc;Ludovic Ybanez;Xiaoze Pei
{"title":"Design and Experimental Testing of a Moving Coil Actuator with Compensation Coils","authors":"Boyuan Yin;Xianwu Zeng;John Frederick Eastham;Emelie Nilsson;Jean-francois Rouquette;Jean Rivenc;Ludovic Ybanez;Xiaoze Pei","doi":"10.17775/CSEEJPES.2023.05240","DOIUrl":null,"url":null,"abstract":"Hydrogen-powered electric aircraft have attracted significant interests aiming to achieve decarbonization targets. Onboard DC electric networks are facing great challenges in DC fault protection requirements. Vacuum interrupters are widely used in low voltage and medium voltage power systems due to being environmentally friendly with low maintenance. In this paper a moving coil actuator with compensation coils for a vacuum interrupter, as part of a hybrid direct current circuit breaker, is designed and experimentally tested. Compensation coils are used to improve operating speed compared with original moving coil actuator. Comparisons between four possible connections of compensation coils and original moving coil actuator are carried out. Experimental results show comparisons between different connections of actuator coils in terms of opening time and coil current with a range of pre-charged capacitor voltages. Dynamic performance of each actuator connection is also compared. The actuator with compensation coils is shown to have a higher current rising rate and achieve faster opening speed, which is a critical requirement for electric aircraft network protection. The parallel connection actuator achieves the highest opening speed within 3.5 ms with capacitor voltage of 50 V.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"707-716"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375970","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10375970/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen-powered electric aircraft have attracted significant interests aiming to achieve decarbonization targets. Onboard DC electric networks are facing great challenges in DC fault protection requirements. Vacuum interrupters are widely used in low voltage and medium voltage power systems due to being environmentally friendly with low maintenance. In this paper a moving coil actuator with compensation coils for a vacuum interrupter, as part of a hybrid direct current circuit breaker, is designed and experimentally tested. Compensation coils are used to improve operating speed compared with original moving coil actuator. Comparisons between four possible connections of compensation coils and original moving coil actuator are carried out. Experimental results show comparisons between different connections of actuator coils in terms of opening time and coil current with a range of pre-charged capacitor voltages. Dynamic performance of each actuator connection is also compared. The actuator with compensation coils is shown to have a higher current rising rate and achieve faster opening speed, which is a critical requirement for electric aircraft network protection. The parallel connection actuator achieves the highest opening speed within 3.5 ms with capacitor voltage of 50 V.
氢动力电动飞机在实现脱碳目标方面备受关注。机载直流电网在直流故障保护要求方面面临巨大挑战。真空灭弧室因其环保和低维护成本的特点,被广泛应用于低压和中压电力系统。本文设计了一种带补偿线圈的动圈传动装置,用于真空灭弧室,作为混合直流断路器的一部分,并进行了实验测试。与原来的动圈传动器相比,补偿线圈用于提高运行速度。对补偿线圈的四种可能连接方式和原始动圈推杆进行了比较。实验结果表明,在预充电容电压范围内,不同连接方式的致动器线圈在打开时间和线圈电流方面都有可比性。此外,还比较了每种致动器连接的动态性能。结果表明,带补偿线圈的致动器具有更高的电流上升率和更快的打开速度,而这正是飞机电网保护的关键要求。并联致动器在电容器电压为 50 V 时,可在 3.5 ms 内达到最高打开速度。
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.