CRISPR/Cas9 improves targeted knock-in efficiency in Aspergillus oryzae

Takehiko Todokoro, Yoji Hata, Hiroki Ishida
{"title":"CRISPR/Cas9 improves targeted knock-in efficiency in Aspergillus oryzae","authors":"Takehiko Todokoro,&nbsp;Yoji Hata,&nbsp;Hiroki Ishida","doi":"10.1016/j.biotno.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p><em>Aspergillus oryzae</em> is an important fungus in food and industrial enzyme production. In <em>A. oryzae</em>, targeted knock-in transformation is primarily limited to homologous recombination (HR)-based systems, in which non-homologous end-joining (NHEJ)-disruptant hosts are required. However, preparation of hosts and transformation templates for such systems is laborious, in addition to other disadvantages. In the present study, we examined alternative targeted knock-in mediated by CRISPR/Cas9, in which a microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA) repair system was employed. This approach enabled the efficient development of targeted knock-in transformants without host preparation using only a short homology template. We conclude that this new method could be applied to facilitate the transformation of <em>A. oryzae</em>, and will make it easier to acquire targeted knock-in transformants, especially from industrially important non-model strains.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 58-63"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000072/pdfft?md5=c3071d5a3a69f15bfd265d3655c1bb84&pid=1-s2.0-S2665906924000072-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906924000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aspergillus oryzae is an important fungus in food and industrial enzyme production. In A. oryzae, targeted knock-in transformation is primarily limited to homologous recombination (HR)-based systems, in which non-homologous end-joining (NHEJ)-disruptant hosts are required. However, preparation of hosts and transformation templates for such systems is laborious, in addition to other disadvantages. In the present study, we examined alternative targeted knock-in mediated by CRISPR/Cas9, in which a microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA) repair system was employed. This approach enabled the efficient development of targeted knock-in transformants without host preparation using only a short homology template. We conclude that this new method could be applied to facilitate the transformation of A. oryzae, and will make it easier to acquire targeted knock-in transformants, especially from industrially important non-model strains.

CRISPR/Cas9 提高了黑曲霉的定向基因敲入效率
黑曲霉是食品和工业酶制剂生产中的一种重要真菌。在黑曲霉中,定向基因敲入转化主要限于基于同源重组(HR)的系统,其中需要非同源末端连接(NHEJ)干扰宿主。然而,为这种系统制备宿主和转化模板非常费力,而且还有其他缺点。在本研究中,我们研究了 CRISPR/Cas9 介导的替代性靶向基因敲入,其中采用了微同源物介导的末端连接(MMEJ)和单链退火(SSA)修复系统。这种方法无需宿主制备,只需使用一个短同源模板,就能高效开发出靶向基因敲入转化子。我们的结论是,这一新方法可用于促进奥氏青霉的转化,并将使获得靶向基因敲入转化体变得更容易,尤其是从工业上重要的非模式菌株中获得靶向基因敲入转化体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信