{"title":"The effect of physical activity on vitamin D: A systematic review and meta-analysis of intervention studies in humans","authors":"S.R. Khan , M. Claeson , A. Khan , R.E. Neale","doi":"10.1016/j.puhip.2024.100495","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Cross-sectional studies demonstrate a positive association between higher physical activity and serum 25-hydroxyvitamin D (25(OH)D) concentration. However, whether this association is causal is unclear. We conducted a systematic review to identify intervention studies that examined the effect of physical activity on serum 25(OH)D concentration in humans.</p></div><div><h3>Study design</h3><p>Systematic review and meta-analysis.</p></div><div><h3>Methods</h3><p>We searched PubMed, Scopus and Web of Science to identify full-text peer-reviewed articles published in English from inception until January 2023. Eligible studies were randomised controlled trials or quasi-experimental studies. We used random effects meta-analysis to calculate the weighted mean difference (WMD) in the change in 25(OH)D concentration between physical activity and control groups. We used the revised Cochrane risk-of-bias tool for randomized trials (RoB 2) to assess the methodological quality of included studies.</p></div><div><h3>Results</h3><p>We included 32 articles in the systematic review and 24 in the meta-analysis. The intervention varied from resistance and weight-bearing exercises (n = 13) to aerobic exercises (n = 10), moderate and moderate-to-vigorous exercises (n = 5), aquatic exercise (n = 2), and multicomponent traditional exercises (n = 2) (Tai Chi and Yijinjing). The WMD in 25(OH)D in the physical activity and control groups was 9.51 and 4.87, respectively (between-group mean difference 4.64, p = 0.002). However, the difference was only evident in studies that implemented the intervention outdoors (n = 3; between-group mean difference 17.33, p < 0.0001); when the intervention was indoors there was no significant effect of physical activity on 25(OH)D (n = 16; between-group mean difference 1.80, p = 0.113).</p></div><div><h3>Conclusions</h3><p>This meta-analysis of physical activity interventions in humans showed that physical activity does not lead to increased 25(OH)D independently of time outdoors. However, most studies were under-powered, in many the exercise was low intensity, and vitamin D was not the primary outcome.</p></div>","PeriodicalId":34141,"journal":{"name":"Public Health in Practice","volume":"7 ","pages":"Article 100495"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666535224000326/pdfft?md5=2b6a7d1eaaab2bd9da49069a77b36695&pid=1-s2.0-S2666535224000326-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Health in Practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666535224000326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Cross-sectional studies demonstrate a positive association between higher physical activity and serum 25-hydroxyvitamin D (25(OH)D) concentration. However, whether this association is causal is unclear. We conducted a systematic review to identify intervention studies that examined the effect of physical activity on serum 25(OH)D concentration in humans.
Study design
Systematic review and meta-analysis.
Methods
We searched PubMed, Scopus and Web of Science to identify full-text peer-reviewed articles published in English from inception until January 2023. Eligible studies were randomised controlled trials or quasi-experimental studies. We used random effects meta-analysis to calculate the weighted mean difference (WMD) in the change in 25(OH)D concentration between physical activity and control groups. We used the revised Cochrane risk-of-bias tool for randomized trials (RoB 2) to assess the methodological quality of included studies.
Results
We included 32 articles in the systematic review and 24 in the meta-analysis. The intervention varied from resistance and weight-bearing exercises (n = 13) to aerobic exercises (n = 10), moderate and moderate-to-vigorous exercises (n = 5), aquatic exercise (n = 2), and multicomponent traditional exercises (n = 2) (Tai Chi and Yijinjing). The WMD in 25(OH)D in the physical activity and control groups was 9.51 and 4.87, respectively (between-group mean difference 4.64, p = 0.002). However, the difference was only evident in studies that implemented the intervention outdoors (n = 3; between-group mean difference 17.33, p < 0.0001); when the intervention was indoors there was no significant effect of physical activity on 25(OH)D (n = 16; between-group mean difference 1.80, p = 0.113).
Conclusions
This meta-analysis of physical activity interventions in humans showed that physical activity does not lead to increased 25(OH)D independently of time outdoors. However, most studies were under-powered, in many the exercise was low intensity, and vitamin D was not the primary outcome.